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1. Introduction

Given a continuous function f : IR+ → IR+ and a nonnegative function ξ 6≡ 0

on [−τ, 0], we consider the delay differential equation

ẋ + µx = f(x(· − τ)) , x(s) = ξ(s) for s ∈ [−τ, 0]. (1.1)

For simplicity, we assume throughout that ξ is bounded. It follows that (1.1)

has a unique solution — e.g., one can proceed by intervals of length τ — with

xf,ξ(·) nonnegative and continuous for t ≥ 0. We denote the solution of the

delay differential equation (1.1) by x(·) = xf,ξ(·). It is easily seen that one has

the equivalent integrated formulation:

x(t) = e−µ(t−a)x(a) +
∫ t

a

e−µ(t−s)f(x(s− τ)) ds. (1.2)

for t ≥ 0. [Actually, continuity of f is not needed for (1.2), only enough regu-

larity to ensure the requisite integrability.] We further note the following.

LEMMA 1 Given real constants µ, ν and τ > 0, there is a function X = X(t)

such that the solution y of the autonomous linear delay differential equation

ẏ + µy + νy(t− τ) = g(t) , y
∣∣∣
[−τ,0]

= η (1.3)

has the integral representation

y(t) = y0(t; η) +
∫ t

0

X(t− s)g(s) ds (1.4)

where y0 = y0(·; η) is the solution of the associated homogeneous initial value

2



problem. Both X(·) and y0 decay exponentially if

h(z) := z + µ + νe−τz = 0 ⇒ <(z) < 0, (1.5)

i.e., if every root of the characteristic equation has (strictly) negative real part,

and grow exponentially if h(·) has any root with positive real part.

Proof: See, e.g., [6]. Note that

‖X‖1 =
∫ ∞

0

|X(t)| dt < ∞ (1.6)

when X decays exponentially.

A standard calculation shows that (1.5) holds for all τ > 0 when |ν| < µ

and, conversely, fails when |ν| > µ unless τ is restricted so that

τ < τ∗ = τ∗(µ, ν) =
arccos[−µ/ν]√

ν2 − µ2
(1.7)

(cf., e.g., [5], [1]). We will later focus our attention on delay equations of the

form (1.1) in which the nonlinearity f satisfies:

•f : IR+ = [0,∞) → IR+ is continuous.

• There is a unique equilibrium r̄ > 0, so µr̄ = f(r̄) > 0.

•


f(r) > µr for 0 < r < r̄,

f(r) < µr for all r > r̄.

(1.8)

2. Comparison theorem and consequences

An easy argument then provides the following basic comparison theorem.
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THEOREM 2 Let f, ξ and correspondingly g, η be as above with g non-decreasing.

Set x := xf,ξ and y := xg,η.

1. Suppose f ≤ g where relevant (i.e., f(r) ≤ g(r) for each r in the range of

f(x)) and suppose ξ ≤ η on [−τ, 0]. Then x(t) ≤ y(t) for all t.

2. Suppose f ≥ g where relevant and ξ ≥ η on [−τ, 0]. Then x(t) ≥ y(t) for

all t.

Proof: Both cases go in essentially the same fashion, so we only consider

the first case (with f ≤ g, etc.). Now suppose the result were false. We could

then find a largest t∗ such that x(s) ≤ y(s) on [−τ, t∗). For any t < t∗ + τ we

would have r = t − s − τ < t∗ for 0 ≤ s < t whence x(r) ≤ y(r) for such r

so f(x(r)) ≤ g(x(r)) ≤ g(y(r)). It follows from (1.2) and the corresponding

integrated formulation involving g that x(t) ≤ y(t) for such t ∈ [t∗, t∗ + τ) as

well, contradicting the definition of t∗.

We remark that this comparison theorem generalizes to equations in partially

ordered Banach spaces, etc., but we do not pursue this here.

COROLLARY 3 Let f, ξ, x be as above in (1.1).

1. Suppose there is some M > 0 such that f(r) ≤ µmax{r, M} and suppose

x ≤ M on [t∗ − τ, t∗]. Then, also x(t) ≤ M for all t ≥ t∗.

2. Suppose there is some m > 0 such that f(r) ≥ µmin{r, m} and suppose

x ≥ m on [t∗ − τ, t∗]. Then, also x(t) ≥ m for all t ≥ t∗.
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Proof: Again, both cases go in essentially the same fashion so we need

only consider the first. Further, since we can restart at any t∗ it is sufficient to

consider t∗ = 0 so we may assume ξ ≤ M on [−τ, 0].

Take η ≡ M and g(r) := µmax{r, M}. Clearly, g is nondecreasing and the

hypotheses yield ξ ≤ η and f ≤ g. We immediately verify that y ≡ M satisfies

the delay differential equation to have y = xg,η so that the result follows from

Theorem 2.
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We will be seeking asymptotic upper and lower bounds for solutions x(t) of

(1.1) and to this end it is convenient to introduce

m = m(x) = lim inf
t→∞

x(t) M = M(x) = lim sup
t→∞

x(t) (2.1)

LEMMA 4 Let f be bounded with 0 < f(r) ≤ B. Then M ≤ B/µ.

Proof: From (1.2) we have

x(t) ≤ e−µtx(0) +
∫ t

−τ

Be−µ(t−s) ds,

which gives the desired result as t →∞.

We also note some information about the ω-limit set of a nontrivial solu-

tion x, e.g., as used in [10].

LEMMA 5 For any bounded solution x = xf,ξ of (1.1), there are functions u, v

defined on IR such that

i. u, v satisfy (1.1) on IR.

ii. m ≤ u(t), v(t) ≤ M.

iii. u(0) = M, u̇(0) = 0; v(0) = m, v̇(0) = 0.

(2.2)

with m = m(x), M = M(x) as in (2.1).

For completeness, we sketch a proof here.

Proof: By the definition of M there is a sequence tk → ∞ such that

x(tk) → M and we set uk(t) = x(tk + t) — e.g., for t ≥ −tk. The set {uk(·)} is

uniformly bounded with uniformly bounded derivatives, so there is a function u

6



such that uk → u uniformly on compact sets in IR. Since the derivatives also con-

verge uniformly on compact subsets and each uk satisfies (1.1), so does u. Since,

for compact set I and any ε > 0, the definition of M gives m− ε < uk < M + ε

for large enough k, we have (ii.) in the limit. Since uk(0) = x(tk) → M , we

have u(0) = M and, as that is necessarily a maximum, we also have u̇(0) = 0.

The construction of v(·) is similar.
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3. Asymptotic bounds and attraction

THEOREM 6 Let f, ξ, and x be as above in (1.1).

1. Suppose there is some r̄ ≥ 0 such that

f(r) ≤ µr̄ for 0 < r ≤ r̄,

f(r) < µr for all r > r̄.

(3.1)

Then, M ≤ r̄ < ∞ and there is a nonincreasing positive function z+ such

that

x(t) := xf,ξ(t) ≤ z+(t) with z+(t) → r̄ as t →∞. (3.2)

2. Suppose there is some r̄ ≥ 0 such that

f(r) ≥ µr̄ for r ≥ r̄,

f(r) > µr for all 0 < r < r̄.

(3.3)

Then, m ≥ r̄ and there is a nondecreasing nonnegative function z− such

that

x(t) := xf,ξ(t) ≥ z−(t) with z−(t) → r̄ as t →∞. (3.4)

Proof: Yet again, both cases go in essentially the same fashion. For the

first case we begin by fixing

M > r̄, M ≥ ξ, and any ε = ε0 > 0 with r̄ + ε < M . We then let

γε := max{f(r)/r : r̄ + ε ≤ r ≤ M} < µ (3.5)

and, choosing γ so γε ≤ γ < µ, set

g(r) = gε(r) := max{µ(r̄ + ε), γr}. (3.6)
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Now, let λε > 0 satisfy the characteristic equation

λε + γeλετ = µ (3.7)

and set

y∗(t) := y∗ε (t) := Me−λεt. (3.8)

If we did not have ξ bounded on [−τ, 0], we note that x is continuous for

t ≥ 0 so we could restart at τ with bounded initial data. Note also that, since

f was assumed continuous and [r̄ + ε, M ] is compact and nonempty, the ‘max’

in (3.5) is achieved and γε < µ.

Moreover, one easily sees that (3.7) has a unique positive solution since

γ < µ.

The construction yields y∗ which satisfies the delay differential equation

ẏ(t) = −µy(t) + γy(t− τ) (3.9)

so, taking η = ηε to be y∗ on [−τ, 0], this y∗ must coincide with y = xg,η so

long as y∗(t − τ) ≥ r̄ + δ where γ(r̄ + δ) = µ(r̄ + ε). Note that we can — and

do — choose γ close enough to µ to ensure that δ ≤ 2ε.

To apply Theorem 2, we note that g, as given by (3.6), is clearly nonde-

creasing and observe that our hypotheses ensure directly that f(r) ≤ g(r) for

r ≤ r̄ and for r̄ ≤ r ≤ r̄ + ε, while choosing γ ≥ γε ensures that f(r) ≤ g(r)

for r̄ + ε ≤ r ≤ M . Since Corollary 3 ensures x(t) ≤ M , it follows that f ≤ g

where relevant and that ξ ≤ M ≤ η. Thus, Theorem 2 applies and we have

x ≤ y := xg,η — whence x ≤ y∗ as long as y∗ coincides with y. Noting that
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this includes an interval of length τ on which y ≤ r̄ + δ ≤ r̄ + 2ε, we can ap-

ply Corollary 3 again (now restarting at the end of this interval) to see that x

thereafter remains below r̄ + 2ε — i.e., we have shown that

x(t) ≤ zε(t) := max{Me−λεt, r̄ + 2ε}

for all t. Since this holds for arbitrarily small ε > 0, we have (3.2), as desired,

with z+(t) := inf{zε(t) : ε > 0}. This completes the proof for the first case.

Using the second case in Theorem 2, we will get a corresponding lower bound.

First, however, we note that (1.2) gives

x(τ) = e−µτx(0) +
∫ 0

−τ

e−µ(τ+s)f(ξ(s)) ds,

which will be strictly positive for nonnegative, nontrivial ξ — and then x(t)

will be strictly positive for all t ≥ τ . We can therefore assume, restarting if

necessary, that ξ ≥ m for some m > 0. The rest of the proof is then almost

exactly like that for the first case.

THEOREM 7 Let f, ξ, x be as above in (1.1) and suppose there is some r̄ ≥ 0

such that
f(r) > µr for 0 < r < r̄,

f(r) < µr for all r > r̄.

(3.10)

Suppose, also, that

either f(r) ≤ µr̄ for 0 < r < r̄

or f(r) ≥ µr̄ for all r ≥ r̄.

(3.11)
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Then, xf,ξ(t) → r̄ as t → ∞ for every nontrivial initial data ξ ≥ 0 — i.e.,

m = r̄ = M .

Proof: We consider explicitly only the first alternative in (3.11). Since this

with (3.10) include (3.1), the first case of Theorem 6 applies to give M ≤ r̄. If

r̄ = 0, we are now done so we need only show m ≥ r̄ when r̄ > 0. For any ε > 0

we can choose δ > 0 so f(r) ≥ f(r̄)− µε on [r̄, r̄ + δ] and there is some tδ such

that x(t) ≤ r̄ + δ for all t ≥ tδ − τ . Setting r̃ = r̄ − ε, this gives f(r) ≥ µr̃ for

r̃ ≤ r ≤ r̄ + δ. Restarting at tδ, and noting that only values of r below r̄ + δ

are relevant, we thus have the hypotheses for the second case of of Theorem 6

for the restarted problem with r̄ replaced by r̃. Thus, m ≥ r̃ = r̄ − ε for arbi-

trary ε > 0 so m ≥ r̄. Combining these upper and lower asymptotic bounds is

just the desired result.

We henceforth will consider equations of the form (1.1) subject to the hy-

potheses (1.8). If max{f(r) : r > 0} = B ≤ µr̄, giving the first case of (3.11),

then we already know from Theorem 7 that all solutions converge to the equi-

librium r̄, so we will also assume henceforth that B > µr̄ with y0 < r̄: (1.8)

then gives (3.10) but we have neither case of (3.11).
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4. Attraction dependent on the delay

As noted, we henceforth assume (1.8) —

•f : IR+ = [0,∞) → IR+ is continuous.

• There is a unique equilibrium r̄ > 0, so µr̄ = f(r̄) > 0.

•


f(r) > µr for 0 < r < r̄,

f(r) < µr for all r > r̄.

(4.1)

LEMMA 8 Assume (4.1). Then, for every nontrivial solution x of (1.1) we

have

e−µτ r̄ ≤ m ≤ r̄ ≤ M ≤ max
e−µτ r̄≤r≤r̄

f(r)/µ (4.2)

with m = m(x), M = M(x) as in (2.1).

Proof: From Corollary 3 we know x is bounded and let u, v be as in

Lemma 5. Then, as u̇(0) = 0 = v̇(0),

f(u(−τ)) = µu(0) = µM ≥ µu(−τ)

and, similarly, f(v(−τ)) = µv(0) ≤ µv(−τ). But f(r) > µr if and only if x < r̄,

so u(−τ) ≤ r̄ ≤ v(−τ). Thus,

v(0) = m ≤ u(−τ) ≤ r̄ ≤ v(−τ) ≤ M. (4.3)

Since u, v satisfy (1.1) on all of IR, we may apply (1.2) with t = 0, a = −τ to

get, as f(·) ≥ 0,

m = v(0) = e−µτv(−τ) +
∫ 0

−τ

eµsf(x(s− τ)) ds

≥ e−µτv(−τ) ≥ e−µτ r̄
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and consequently, u(−τ) ≥ v(0) ≥ e−µτ r̄. Therefore,

u(0) = f(u(−τ))/µ ≤ max
e−µτ r̄≤r≤r̄

f(r)/µ.

The proof is complete.

Our next objective is to show global attraction to the equilibrium when the

delay τ is not too large.

THEOREM 9 Assume (4.1) and the following pair of one-sided Lipschitz con-

ditions:
0 ≤ f(r)− µr̄ ≤ L1(r̄ − r) for e−µτ r̄ ≤ r < r̄,

0 ≤ µr̄ − f(r) ≤ L2(r − r̄) for r̄ < r ≤ B.

(4.4)

Suppose τ is such that (
1− e−µτ

)
<

µ√
L1L2

. (4.5)

Then, every nontrivial solution of (1.1) converges to the equilibrium r̄.

Proof: Let u, v be as in Lemmas 5 and 8. It then follows from (4.3) that

there is some a ∈ [−τ, 0] such that u(a) = r̄ and we set

A = {s ∈ [a, 0] ⊂ [−τ, 0] : u(s− τ) ≤ r̄}.

Note that for s ∈ [−τ, 0]\A we have u = u(s− τ) > r̄ so f(u)−µr̄ ≤ 0 by (4.1),

while for t ∈ A we have u ≤ r̄ and e−µτ r̄ ≤ m ≤ u from (4.2) in Lemma 8 so

(4.4) gives

f(u)− µr̄ ≤ L1(r̄ − u) ≤ L1(r̄ −m)

Thus, ∫
A

eµs[f(u)− µr̄] ds ≤ L1(r̄ −m)
∫ 0

−τ

eµt ds = L1(r̄ −m)
(
1− e−µτ

)
.
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Applying (1.2) with t = 0 and this a, we then have

M − r̄ = [u(0)− eµau(a)] + µ

∫ 0

a

eµs ds

=
∫ 0

a

eµs[f(u(s− τ))− µr̄] ds

≤
∫
A

eµs[f(u)− µr̄] ds

≤ L1(r̄ −m) (1− e−µτ ) /µ.

Somewhat similarly, we have some a ∈ [−τ, 0] such that v(a) = r̄ and now set

A = {s ∈ [a, 0] : v(s − τ) ≥ r̄}, noting that (4.4) ensures thatf(r) ≥ µr̄ for

r ∈ [e−µτ r̄, r̄]. Much as before we then get

r̄ −m ≤ L2(M − r̄)
(
1− e−µτ

)
/µ.

and combining gives (r̄−m) ≤
[
L1L2 (1− e−µτ )2 /µ2

]
(r̄−m). Thus, using the

assumption (4.5), we have m = r̄ and then M = r̄ as well.

Essentially the same argument gives a localized version when, instead of (4.4)

and (4.5), we have |f ′| suitably small near r̄. 1

1Since we anticipate having f(0) = 0, this part of (4.4) must be treated as a significant
constraint on τ .
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5. Another stability result

We now return to the integral formula (1.4), noting that if x is a solution of

(1.1), then y = x− r̄ is a solution of (1.3) and an appropriate choice of g:

g(t) = f1(y(t− τ)) with f1(r) := [f(r̄ + r)− f(r̄)] + νr (5.1)

where, of course, we anticipate taking ν = −f ′(r̄) for differentiable functions f ,

although this is not required.

It is worth noting that with this choice of ν we necessarily have L1, L2 ≥

|f ′(r̄)| = ν in Theorem 9 so that Lemma 1 suggests that we could not expect

asymptotically stable convergence to equilibrium when ν > µ if we do not have

(1.7); indeed, as we will note in more detail in the following section, (1.1) will

then have a nontrivial periodic solution. Even ignoring the constraint on τ

in requiring that f(r) ≥ µr̄ for r ∈ [e−µτ r̄, r̄], the assumption (4.5) taking

L1 = L2 = −f ′(r̄) = ν leads to (1− e−µτ ) < µ/ν or

τ <
1
µ

ln
[

1
1− µ/ν

]
. (5.2)

Clearly this, as a sufficient condition for convergence to equilibrium, is the

best one can obtain using Theorem 9 and it is interesting to compare with the

[necessarily weaker] condition (1.7). There is obviously a gap between these,

and we now seek to handle intermediate delays under appropriate conditions.

THEOREM 10 Suppose f is a unimodal function and τ > 0 satisfies (1.7)

with ν = −f ′(r̄). Further, suppose

|f(r̄ + r)− f(r̄) + νr| ≤ L|r| for e−µτ r̄ − r̄ ≤ r ≤ B − r̄. (5.3)
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If f is ‘flat enough near equilibrium’ such that (5.3) holds with

L < 1/‖X‖1 (5.4)

where X is as in (1.4), then every nontrivial non-negative solution of (1.1)

converges to the equilibrium r̄ as t →∞.

Proof: Set M̂ = max{M − r̄, r̄−m} and, again, let u, v be as in Lemmas 5

and 8. First suppose M̂ = M − r̄. We then let y(t) = u(t − T ) − r̄ so M̂ =

u(0)− r̄ = y(T ) with T > 0 arbitrary. We note that m ≤ y ≤ M gives |y| ≤ M̂ .

Therefore, (5.3) gives |f1(y)| ≤ LM̂ uniformly. Thus, using (1.3) with (5.1), we

have

M̂ = y0(T ) +
∫ T

0

X(T − s)f1(y(s− τ)) ds

≤ ȳ0(T ) +
∫ T

0

|X(T − s)|LM̂ ds

≤ ȳ0(T ) + L‖X‖1M̂

(5.5)

using (1.6) and letting ȳ0 = y0(·; M̂). For the alternative case M̂ = r̄ −m, we

let y(t) = v(t− T )− r̄ and, similarly, again obtain (5.5) for arbitrary T . Since

ȳ0(T ) → 0 as T →∞, (5.4) ensures that M̂ = 0 so x(t) → r̄ as t →∞.

6. Nonconstant periodic solution for large delay

In this section we will use Hopf bifurcation and fixed point theory to prove the

existence of a nonconstant periodic solution when the delay τ is large enough.

To see more clearly the effect of delay we let µ = 1. The usual linearized analysis
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lets x = r̄ + εy and notes that, to first order in ε, the perturbation satisfies

ẏ + y = f ′(r̄)y(· − τ).

Seeking a solution of the form y(t) = exp(λt), we obtain the characteristic

equation for λ:

λ + 1 = f ′(r) exp(−τλ).

We will have linearized stability if all complex roots of this characteristic equa-

tion have negative real parts. If |f ′(r)| < 1 we have the local convergence to the

positive equilibrium for all delays. If |f ′(r)| > 1, the effect of delay will occur.

More exactly, in this case with

τ > τ∗ =
1√

|f ′(r̄)|2 − 1
arccos

1
f ′(r̄)

there is a nonconstant periodic solution of equation (1.1).

Atay [1] used the Schauder fixed point theory to prove that there is a non-

constant periodic solution of the equation

ẏ = τh(y, y(· − 1)),

provided

τ > τ∗ =
1√

D2 − C2
arccos

(
−C

D

)
,

where h(u, v) is differentiable at the origin, h(0, 0) = 0 and

0 < C := −∂h

∂u
(0, 0) < D := −∂h

∂v
(0, 0).

We let y(t) = x(τt)− r̄ and

h(u, v) = r̄ − u + f(v + r̄).
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Then,

C = 1 D = −f ′(r̄)

and we reproduce

τ∗ =
1√

|f ′(r̄)|2 − 1
arccos

1
f ′(r̄)

.

Here, we assume that f ′(r̄) < −1 and the function arc cosine takes its value in

[0, π].

LEMMA 11 If a positive solution x of (1.1) does not oscillate around the pos-

itive equilibrium r̄ then x(t) tends to r̄ as t →∞. Consequently, every noncon-

stant positive periodic solution should oscillate around the positive equilibrium.

Proof: If x does not oscillate around r̄, then either

lim sup
t→∞

x(t) ≤ r̄ or lim inf
t→∞

x(t) ≥ r̄.

From Lemma 8, in the first case, we have lim supx(t) = r̄. For the second case,

we have lim inf x(t) = r̄. So it is enough to consider the second case. Using

the proof of Lemma 8, we get r̄ ≥ u(−τ) ≥ v(0) = r̄. Hence, u(−τ) = r̄ and

u(0) = f(u(−τ)) = r̄. The proof is now complete.

Y.Cao [2] proved that for τ ≤ τ∗ there is no periodic solution which is larger

than y0 and oscillates slowly around the only positive equilibrium r̄. For τ > τ∗,

there is at most one periodic solution which is larger than y0 and oscillates slowly

around r̄. Recall that a T -periodic solution is called slowly oscillated around

the positive equilibrium, if T > τ , x(0) = x(T ) = r̄, and there is t0 ∈ (0, T − τ)
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such that

x(t0) = r̄, x(t) > r̄ for t ∈ (0, t0) and x(t) < r̄ for t ∈ (t0, T ).

Cao assumes that f is decreasing from y0 < r̄ until f(y0). He also requires

that the function h(x) = xf ′(x)/f(x) is monotonically increasing in [y0, r̄] and

decreasing in [r̄, f(y0)]. Recall that f(y0) is the maximal value of f(y), when y >

0. Without these assumptions on h one can construct several slowly oscillated

periodic solutions for (1.1). Also, it is known that, if a periodic solution is not

oscillated slowly, it should be unstable. Of course, Cao didn’t prove these results

directly, but from his works one can deduce this.
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7. Some applications

Equation (1.1) with unimodal f has been proposed as a model for a variety of

physiological processes, where in most cases, one of the model functions

f(x) = kxc exp(−x) (7.1)

or

f(x) =
kx

1 + xc
, (7.2)

with parameters k > 0 and c > 0, is considered [3, 4, 9, 11-13].

The population dynamics of Nicholson’s blowflies have been studied [9, 12]

using a function f of the form (7.1) with c = 1. In such a case, f is differentiable

and one has

r̄ = ln
k

µ
, (7.3)

and

ν = −f ′(r̄) = µ(ln
k

µ
− 1).

Thus, Theorem 9 yields, using (5.2),

τ <
1
µ

ln
[
ln(k/µ)− 1
ln(k/µ)− 2

]

as a sufficient condition for convergence to equilibrium r̄ given in (7.3), provided

k > µe2. Moreover, there is a nonconstant periodic solution to the model

equation if

τ > τ∗ =
1

µ
√

(ln(k/µ)− 2) ln(k/µ)
arccos

[
1

1− ln(k/µ)

]
,
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using (1.7).

In respiratory studies, (1.1) has been employed in which the response func-

tion takes the form (7.2). In such a case, one has the positive equilibrium

r̄ =
(

k

µ
− 1

)1/c
, (7.4)

provided
k

µ
> 1. Then,

ν = −f ′(r̄) =
µ

k
[(c− 1)k − cµ].

Thus, Theorem 9 yields, using (5.2),

τ <
1
µ

ln
[
c(1− µ/k)− 1
c(1− µ/k)− 2

]

as a sufficient condition for convergence to equilibrium r̄ given in (7.4), provided

c(1− µ

k
) > 2.

Moreover, there is a nonconstant periodic solution to the model equation (1.1)

with f as in (7.2) if

τ > τ∗ =
1

µ
√

c(c(1− µ/k)− 2)(1− µ/k)
arccos

[
1

1− c(1− µ/k)

]
,

using (1.7).

8. Conclusion

We have given a basic comparison theorem and discussed some of their conse-

quences. The effect of delay on the asymptotic behavior has then been studied

and the periodicity of positive solutions investigated for large delays. Our dis-

cussions allow the nonlinearity f to be non-monotonic and non-differentiable
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which are then more general than those of [8]. Thus, our results should be

applicable to a wider range of population models; for example, models arising

from the study of an optically bistable device [3, 4], blood cells production, res-

piration dynamics, or cardiac arrhythmias [11, 13]. We can also find application

with a system in which the growth function is not smooth, such as a popula-

tion where growth occurs in birth pulses (during the breeding season) and not

continuously throughout the year.

Open problem. Investigate the stability of periodic solutions of (1.1) and

the structure of ω-limit sets when the delay is large enough!
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