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Abstract
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be done and what will be in here when this is completed. [These
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if not yet included.]
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1 Introduction

COMMENT: Some additional explanatory material is needed in the In-
troduction as to our concerns (in particular, that we are not looking at all
at questions regarding periodic solutions) and our strategy for the analysis.

Our concerns have largely been motivated by consideration of population
models, but the presentation of this paper in terms of interval maps has
been strongly influenced by Proposition 1.1 of [6]. We will be considering,
primarily, delay differential equations of the form

ẋ+ x = f(x)
∣∣∣
t−τ

for t > 0(1.1)

with f(·) continuous and fixed lag τ > 0. Proposition 1.1 of [6] (see Lemma 3.1,
below) asserts that, for any closed interval I ⊂ R, one has:

If f(I) ⊂ I, then

x(t) ∈ I on [s, s+ τ ] implies x(t) ∈ I for all t ≥ s.
(1.2)

for any solution x of (1.1), assuming s+ τ ≥ 0. We will usually be assuming
that the constitutive function satisfies the structural hypothesis{

f(r) > r if r < 0,

f(r) < r if r > 0,
(1.3)

or, equivalently, that
f(r)/r < 1 for r 6= 0.(1.4)

The hypothesis (1.3) implies that f has a (unique) fixed point f(0) = 0,
so the constant x ≡ 0 is a steady state equilibrium solution. Our concern
is the global asymptotic stability of this equilibrium solution, i.e., we seek
conditions ensuring that, for every solution x of (1.1), the asymptotic range

I = [m,M ] where

 m = lim inf
t→∞

x(t)

M = lim sup
t→∞

x(t)
(1.5)
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will just be the single point {0}.

COMMENT: It should be remarked that our analysis proceeds primarily
by looking at the dependence of global asymptotic stability on the constitu-
tive function f(·) for fixed delay τ > 0. This must then be interpreted, for
any fixed f , to see the dependence on τ .

A variety of population models lead to scalar delay differential equations
of the form

dy

dt
(t) = [g(y)y](t− τ)− δy(t)(1.6)

where y is the population size, g(·) gives the population dependent reproduc-
tion rate, the lag τ is a maturation time or gestation period, and the constant
δ is a death rate. For such a model, all of these are necessarily positive.

Not only can the population size never be meaningfully negative, but the
model cannot represent a real population when y ≈ 0. [For example, it
would be unlikely to have births if y(t) = 0, even if y(t − τ) would seem to
permit this in (1.6).] The derivation of (1.6) is by the deterministic evolution
of the mean of a stochastic situation, justified by the Law of Large Numbers
for large populations, but subject to stochastic fluctuation when y is too
small for that.

We are then looking at autonomous situations in which there is a (unique)
population size r̄ > 0 at which the birth and death rates balance: g(r̄) = δ. It
is typical that deaths exceed births for greater populations (so this population
size represents the steady state carrying capacity of the environment) while
births exceed deaths when the population is below this capacity, i.e.,{

g(r) > δ if 0 < r < r̄,

g(r) < δ if r > r̄.
(1.7)

Thus, r̄ provides a unique equilibrium: the constant function y ≡ r̄ is a
solution and there is no other nontrivial constant solution.

We will be specifically interested in Nicholson’s blowfly model, for which
g takes the form g(r) = µe−γr with parameters µ, γ > 0 — giving r̄ =
[lnµ/δ]/γ > 0 provided µ > δ. See Section 5.

COMMENT: It is, of course, Section 5 which now is most in need of
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completion.

It is immediate that this equilibrium solution is stable for the ordinary
differential equation model, neglecting the delay by setting τ = 0 in (1.6) —
and, indeed, is a global attractor in this ordinary differential equation setting.
Analyzing the ordinary differential equation, one obtains this stability for
quite general continuous functions g(·), subject to (1.7), but it is well-known
that this can fail in the presence of delay, especially when the delay is large.

In interpreting ‘global’ here, we first note that we are only considering y ≥ 0
as meaningful and will neglect the trivial solution y ≡ 0. It turns out that
our hypotheses then ensure strict positivity of nontrivial solutions of (1.6)
for t ≥ τ and the stability assertion we seek is the asymptotic convergence
to equilibrium as t → ∞ (in an appropriate topology) of all solutions with
nontrivial non-negative initial data. We are also interested, when possible,
in demonstrating persistence — that lim inft→∞ y(t) > 0 for all nontrivial
solutions — even when we cannot demonstrate global asymptotic stability
of the equilibrium.

Similar equations arise in modeling . . .

COMMENT: This should be continued a bit, noting some situations
other than population dynamics with similar equations . . . ; for example,
compare the Introduction of [6].

It will be convenient to transform the equation (1.6) somewhat. First
choose the time unit to make δ = 1 (assuming, of course that we start with
δ > 0), noting that there is a corresponding change in τ and g(·). We then
could set f̂(r) = rg(r) but find it more convenient to work with the deviation
from equilibrium. Thus, finally, we set

x(t) = y(t)− r̄, f(r) = [r + r̄]g(r + r̄)− r̄(1.8)

and obtain for x(·) the delay differential equation (1.1). It is easy to verify
that the modelling assumption (1.7) above for the population model (1.6)
immediately gives our structural hypothesis (1.3) for this constitutive func-
tion f(·). It will be useful to note that the positivity of g gives also

f(r) ≥ −r̄ for r ≥ 0.(1.9)
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For constitutive functions f satisfying (1.3), we introduce the function ψ =
ψ(·; f) defined by

ψ(r̃) =

{
sup{f(r) : r̃ ≤ r ≤ 0} for r̃ ≤ 0,

inf{f(r) : 0 ≤ r ≤ r̃} for r̃ ≥ 0.
(1.10)

Note that ψ is nonincreasing with ψ(0) = 0. In the presence of (1.3), one
has f(I) = ψ(I) for any interval I containing 0. Our main sharpening
of (1.2) will then be a delay-dependent estimate for the asymptotic range of
a bounded solution:

m ≥
(
1− e−τ

)
ψ(M), M ≤

(
1− e−τ

)
ψ(m)(1.11)

COMMENT: Complete this section by outlining the paper.

2 Some background

We begin this section by noting the equivalence of the delay differential equa-
tion (1.1) with the integral equation

x(t) = e−(t−s)x(s) +

∫ t

s

e−(t−r)f(x(r − τ)) dr(2.12)

for s ≤ t < ∞. Of course, for solutions on R+ we take s ≥ 0 here. For,
e.g., s = 0, the requisite values of x(0) and of x(r − τ) for 0 ≤ r ≤ τ are
initial data for the problem. It is immediately apparent from (2.12) that such
solutions will be continuous for t ≥ 0 and C1 for t > τ even if the initial data
is only measurable (with f(x(·)) integrable).

More generally, if we denote by z = zν,τ (·) the fundamental solution of
the linear delay differential equation

ż + z = νz(· − τ)(2.13)

so z(t) = 0 for t < 0 with z(0) = 1, then we can easily verify the integral
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representation

x(t) =

[
z(t− s)x(s) + ν

∫ 0

−τ

z([t− s]− [r + τ ])x(s+ r) dr

]
+

∫ t−s

0

z(t− s− r) [f(x)− νx] (s+ r − τ) dr

(2.14)

for arbitrary ν. Note that

zν,τ (t) = e−t

bt/τc∑
k=0

[νeτ (t− kτ)+]k

k!
(2.15)

for t ≥ 0, as again may easily be verified by the method of steps. Using
(2.15), some manipulation shows that (2.14) reduces to (2.12) for arbitrary ν
if t ≤ s+ τ .

COMMENT: Check the details of this.

The equation (2.13) is the special case f(r) = νr of (1.1). We will have
exponential decay to 0 of all solutions of (2.13)— i.e., global asymptotic
stability — if and only if all complex solutions λ of the characteristic equation

λ+ 1 = νe−τλ(2.16)

have negative real parts: note, e.g., that the Laplace transform of zν,τ is
just 1/h where the characteristic function h(λ) = λ+1−νe−τλ. This stability
is impossible if ν ≥ 1, which we have, in any case, excluded by (1.3) and
otherwise certainly holds for τ = 0. By continuation as τ increases from 0, the
critical case (Hopf bifurcation) occurs when one would have a pure imaginary
solution λ = iω of (2.16) so

1 = ν cos τω, ω = ν sin τω,

which gives 1 + ω2 = ν2 so ω = ±
√
ν2 − 1. Thus, we have global asymptotic

stability for (2.13), exponential decay to 0,

• for 0 ≤ τ < τ0 with

τ0 = τ0(ν) =
arccos(1/ν)√

ν2 − 1
(2.17)

(so τ(ν) ∼ π/2|ν| as ν → −∞) when ν < −1.
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• for arbitrary delay τ > 0 when −1 ≤ ν < 1, so we then set τ0(ν) = ∞.

For 0 ≤ τ < τ0(ν) (with ν < 1) we have exponential decay of the fundamen-
tal solution z = zν,τ (·) of (2.14) and (2.15) so, certainly, z will then be in
L1(0,∞); we set

Z1 = Z1(ν, τ) = ‖z‖L1(0,∞) when τ < τ0(ν).(2.18)

COMMENT: We would like an estimate for Z1, giving the dependence
on ν, τ . We see from (2.15) that z is positive on R+ when 0 ≤ ν (all τ ≥ 0)
so then, using (2.13), we can calculate explicitly

Z1 = I :=

∫ ∞

0

z(t) dt

=

∫ ∞

0

[νz − ż] dt

= νI − z |∞0 = νI + 1,

giving Z1 = 1/(1 − ν). Since |zν,τ | ≤ z|ν|,τ , this also gives the rather crude
estimate Z1 ≤ 1/(1 − |ν|) for −1 < ν ≤ 0. Unfortunately, the range −1 <
ν < 1 is not really interesting for this and we have no estimate (necessarily
τ -dependent) when ν ≤ −1.

We note that when τ = τ0(ν) < ∞ the linear delay differential equa-
tion (2.13) has periodic solutions x(t) = c cosωt with ω =

√
ν2 − 1; the

minimal period T is then 2π/ω so

T

τ
=

2π

arccos(1/ν)
−→ 4− as ν → −∞.

[In general, the (minimal) period T would not be an integer multiple of
the lag τ , although that is not impossible: for ν = cos(2π/3) =

√
3/2 this

periodic solution of (2.13) has minimal period 3τ .]

COMMENT: Check this.
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For the nonlinear problem (1.1), the linearization around equilibrium is
just (1.1) with ν = f ′(0) and we expect the analysis of local asymptotic sta-
bility to be as above. We note that it is known (cf., e.g., [4], [3], [1], using
the Non-Ejective FixPoint Theorem of [2]), once one has bounded solutions,
that there exist periodic solutions of (1.1) — so even local asymptotic sta-
bility is impossible — when f ′(0) = ν < −1 and the delay τ is past the
onset of instability for the linearization, i.e., when τ is greater than τ0(ν) as
given by (2.17). This represents a fundamental limitation on the attainable
positive results for global asymptotic stability which we seek.

3 First results

We begin with (1.2), including here a slightly different proof from that in [6];
see also Remark 6.2.

Lemma 3.1 Let I = [m,M ] be a closed subinterval of R (possibly infinite)
and let x be a solution of (1.1):

ẋ+ x = f(x(· − τ))

such that I ⊃ x([s, s+ τ ]) — i.e., m ≤ x(t) ≤M for s ≤ t ≤ s+ τ . Suppose
also that f(I) ⊂ I — i.e., that

m ≤ r ≤M implies m ≤ f(r) ≤M.(3.19)

Then m ≤ x(t) ≤M for all t ≥ s.

Proof: We wish to show that T = sup{t : m ≤ x(r) ≤M for s ≤ r ≤ t}
cannot be finite. If so, there would be some t∗ ∈ (T, T + τ) with either
x(t∗) < m and ẋ(t∗) ≤ 0 or x(t∗) > M and ẋ(t∗) ≥ 0; suppose the former,
necessarily with m finite. Then (1.1) gives

f(x(t∗ − τ)) = ẋ(t∗) + x(t∗) < m.

On the other hand, setting r = x(t∗−τ) and noting that t∗−τ < T , so r ∈ I
by the definition of T , we see that f(r) ≥ m by (3.19) — a contradiction.
We get a similar contradiction in the alternative case, x(t∗) > M .
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Theorem 3.2 Suppose the constitutive function f(·) satisfies (1.3) and that
there is a sequence rk → ∞ such that ψ(ψ(rk)) < rk (alternatively, if there
is a sequence r̃k → −∞ such that ψ(ψ(r̃k)) > r̃k). Then every solution of
(1.1) is bounded.

Proof: We can take rk to be an increasing sequence so, as ψ is decreas-
ing, r̃k = ψ(rk) will be a decreasing sequence and we distinguish two cases:
r̃k → −∞ or r̃k ≥ r̃∗; in the latter case, r̃∗ = ψ(∞) > −∞. Given any par-
ticular solution x(·) of (1.1), let I0 = [m0,M0] ⊃ x([s, s+ τ ]) for some s ≥ 0
so m0 ≤ x(t) ≤ M0 on [s, s + τ ]. If we are in the first case or if we are in
the second case with r̃∗ < m0, we can choose k large enough that rk ≥ M0

and r̃k ≤ m0. We then can set I = [r̃k, rk] ⊃ I0 and have ψ(rk) = r̃k and
ψ(r̃k) = ψ(ψ(rk)) < rk so ψ(I) ⊂ I. On the other hand, if we are in the
second case with m0 ≤ r̃∗, we can choose k so rk ≥ max{M0, ψ(m0)} and set
I = [m0, rk]. We then have ψ(rk) ≥ r̃∗ ≥ m0 and, of course, rk ≥ ψ(m0) so
again ψ(I) ⊂ I. In either of these situations we may then apply Lemma 3.1
to see that x(·) remains in the bounded interval I.

We remark that if ψ(−∞) is finite as in (1.9), then ψ(ψ(r)) < r for all
r > ψ(ψ(∞)) so Theorem 3.2 applies (and similarly if ψ(∞) is finite.

4 τ-dependent estimates

COMMENT: As suggested by Giang, this Lemma is used for the proof
of Theorem 4.2 – so we include a proof for completeness – but there is an
alternative proof of that (which I sent you) using Ekeland’s Approximate
Variational Principle instead of Lemma 4.1. On the other hand, if this paper
would be rewritten as a successor to the version now submitted to JMAA,
it might be interesting to omit Lemma 4.1 entirely and give the alternative
proof of Theorem 4.2 instead.

Lemma 4.1 Let I = [m,M ] be the asymptotic range of a bounded solution x
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of (1.1). Then there are C1 functions u, v on R such that

i. u, v satisfy (1.1) on all of R
ii. m ≤ u(t), v(t) ≤M for all t so

min{m,ψ(M)} ≤ f(u(t)), f(v(t)) ≤ max{M,ψ(m)}
iii. u(0) = m, u̇(0) = 0; v(0) = M, v̇(0) = 0.

(4.20)

Proof: By the definition (1.5) of m, there is a sequence tk → ∞ such
that x(tk) → m and we set uk(t) = x(tk + t) — e.g., for t ≥ −1

2
tk with

uk(t) ≡ x(1
2
tk) for t ≤ −1

2
tk. The set {uk(·)} is uniformly bounded (with

m− ε ≤ uk(t) ≤M + ε for large enough tk) with uniformly bounded deriva-
tives, so there is a function u such that uk → u uniformly on compact sets
in R. Clearly m ≤ u(t) ≤ M in the limit. Since each uk satisfies (1.1) on
[−T, T ] for tk > 2T , the derivatives also converge uniformly on compacta we
see that u satisfies (1.1) on each interval [−T, T ], giving (i). We already have
m ≤ u(t) ≤ M . If u(t) = r < 0 for some t, then, by the definition of m
and by (1.3), we have m ≤ r < f(r) with m < 0 so the definition (1.10)
gives f(r) ≤ ψ(r). Similarly, if u(t) = r > 0, then ψ(r) ≤ f(r) < r ≤ M .
Thus, we always have either m < f(r) (if r = u(t) < 0) or ψ(r) ≤ f(r)
(if r ≥ 0), etc., so, for either possible sign of u(t), we have the inequality
of (ii) for f(u(t)). Since uk(0) = x(tk) → m, we have u(0) = m and, as that
is necessarily a minimum by (ii), we also have u̇(0) = 0. The construction
of v(·) is similar.

Theorem 4.2 Suppose the constitutive function f(·) satisfies (1.3) and that
I = [m,M ] is the asymptotic range of a bounded solution x(·) of (1.1). Then
I ⊂ ψτ (I), i.e.,

m ≥ ψτ (M), M ≤ ψτ (m)

where ψτ (r̃) = (1− e−τ )ψ(r̃).
(4.21)

Proof: Let u, v be as in Lemma 4.1. Since u satisfies (1.1) and u̇(0) = 0,
we have m = u(0) = f(u(−τ)). Noting that u(−τ) = r ≥ m = f(r), the
hypothesis (1.3) gives u(−τ) > 0. Applying (2.12) to the solution u with
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t = 0 and s = −τ , we then obtain, using Lemma 4.1(ii),

m = u(0) = e−τu(−τ) +

∫ 0

−τ

erf(u(r − τ)) dr

>

∫ 0

−τ

er min{m,ψ(M)} dr

=
(
1− e−τ

)
min{m,ψ(M)}.

Since 0 < (1− e−τ ) < 1, this gives m > (1− e−τ )ψ(M) = ψτ (M) un-
less m = ψ(M) = 0. Essentially the same argument, using v, shows that
M < (1− e−τ )ψ(m) = ψτ (m) unless M = ψ(m) = 0. Combining these
shows that I ⊂ ψτ (I).

Corollary 4.3 Suppose the constitutive function f(·) satisfies (1.3) and that
I = [m,M ] is the asymptotic range of a bounded solution x(·) of (1.1). Then
either m < 0 < M (so x(·) oscillates between approximately m and M with
infinitely many intermediate zeroes) or m = 0 = M so x converges to equi-
librium.

Proof: Suppose we were to haveM ≥ m > 0. Then (1.10) gives ψ(m) ≤
0, contradicting 0 < M ≤ ψτ (m) as in (4.21). Similarly we cannot have
m ≤ M < 0. Further, if m = 0 then (4.21) gives 0 = m ≤ M ≤ ψτ (m) = 0;
of course, M = 0 similarly implies m = 0.

Corollary 4.4 Suppose the constitutive function f(·) satisfies (1.3) and that
I = [m,M ] is the asymptotic range of a bounded solution x(·) of (1.1). For
any bounded interval I = [m,M ] ⊃ I, one has I ⊂ ψτ (I) and

I ⊂
⋂
k

ψτ
[k](I).(4.22)

Proof: Since m ≤ m ≤ M ≤ M with ψτ (·) decreasing, we have
ψτ (M) ≤ ψτ (M) ≤ ψτ (m) ≤ ψτ (m) — i.e., ψτ (I) ⊃ ψτ (I) ⊃ I. By it-
eration, this gives (4.22).

11



Corollary 4.5 Suppose the constitutive function f(·) satisfies (1.3) and that
I = [m,M ] is the asymptotic range of a bounded solution x(·) of (1.1). For
any bounded interval I = [m,M ] ⊃ I, suppose f satisfies on I the one-sided
linear bounds

f(r) ≤ a+ b(−r) when m ≤ r ≤ 0

f(r) ≥ −a− br when 0 ≤ r ≤M.
(4.23)

Then I ⊂ I ′ = [m′,M ′] where

m′ = −
(1− e−τ )

(
a+ ba

)
1− (1− e−τ )2 bb

, M ′ =
(1− e−τ ) (a+ ba)

1− (1− e−τ )2 bb

provided (1− e−τ ) < 1/
√
bb. In particular, if each solution of (1.1) even-

tually lies in an interval I for which (4.23) holds with a = a = 0, then the
equilibrium is globally asymptotic stable.

COMMENT: Add: For example, if f(r) ≥ 0 for all r > 0 (alterna-
tively, if f(r) ≤ 0 for r < 0), then we would have global asymptotic stability.
Proof: If f(r) ≥ 0 for all r > 0, then Theorem 3.2 Complete..

Proof: From (4.23) one gets corresponding linear bounds for ψ on I ⊃ I
so, using (4.21),

m ≥ ψτ (M) ≥ (1− e−τ )
(
−a− bM)

)
≥ (1− e−τ )

[
−a− bψτ (m)

]
≥ (1− e−τ )

[
−a− b (1− e−τ ) (a+ b(−m)))

]
= −

[
(1− e−τ ) a+ (1− e−τ )

2
ba

]
+ (1− e−τ )

2
bbm

whence m ≥ m′ — provided (1− e−τ ) < 1/
√
bb so [1− (1− e−τ )

2
bb] would

be positive. One gets M ≤ M ′ similarly. If a = a = 0, then this gives
m = M = 0 so one would have asymptotic convergence to equilibrium and
this, for each solution, is the asserted global asymptotic stability.

For our next result we wish to exploit the representation (2.14) to obtain
a bound for I in terms of

D = Dν(r) = f(r)− νr, Dν(I) = ‖D‖L∞(I).(4.24)
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The results provided will be a bit less satisfactory than those of Theorem 4.2,
since the fundamental solution z of (2.13) does not have a fixed sign for ν < 0.
Note that ν cannot be entirely arbitrary here as Z1(ν, τ) of (2.18) will only
be finite when τ < τ0.

Theorem 4.6 Suppose the constitutive function f(·) satisfies (1.3). Now
suppose I = [m,M ] is the asymptotic range of a bounded solution x(·)
of (1.1). Then, for any ν such that τ < τ0(ν) we have

I ⊂ [−α, α] with α = Z1(ν, τ)Dν(I),(4.25)

i.e., −m,M ≤ α.

Proof: Since f is continuous, we can find a = aε large enough that
m− δ ≤ x(t) ≤M + δ for t ≥ aε − τ giving

|D(x(t))| ≤ max{|D(r)| : r ∈ I}+ ε = D(I) + ε.(4.26)

Then, for large t, (2.14) with s = 0 gives

x(T ) =

[
z(T )x(0) + ν

∫ 0

−τ

z(T − [r + τ ])x(r) dr

+

∫ a

0

z(T − r)[D(x)](r − τ) dr

]
+

∫ T

a

z(T − r)[D(x)](r − τ) dr.

By the choice of a = aε we can apply (4.26) in the last term here so that is
bounded by Z1[D(I) + ε] for arbitrary T > a. We can choose T = Tk →∞
so, e.g., x(Tk) → m and note that, with a fixed, the bracketed terms [· · ·] → 0
as Tk →∞ by the exponential decay of z(·). In the limit Tk →∞ this gives
|m| ≤ Z1[D(I)+ε]; since ε > 0 was arbitrary, we obtain: |m| ≤ α. Similarly,
choosing Tk →∞ so x(Tk) →M leads to |M | ≤ α and combing gives (4.25)
as desired.

Corollary 4.7 Suppose I = [m,M ] is the asymptotic range of a bounded
solution x(·) of (1.1). Suppose the constitutive function f satisfies (1.3) and
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is ‘sufficiently flat’ on some symmetric bounded interval I = [−M,M ] ⊃ I
that, for some choice of ν,

|f(r)− νr| ≤ a+ ϑ|r| with

0 ≤ ϑ <
1

Z1(ν, τ)
, and 0 ≤ a ≤ (1− Z1ϑ)M

Z1

.
(4.27)

Then

I ⊂ I ′ = [−M ′,M ′] with M ′ =
Z1a

1− Z1ϑ
.

[If a = 0 in (4.27), one has asymptotic stability. If each solution of (1.1)
eventually lies in a symmetric interval I on which (4.27) holds with a = 0,
then one has global asymptotic stability of the equilibrium.]

Proof:

COMMENT: Finish this proof...

5 Examples

COMMENT: We should work out the specific implications of the above
for persistence and convergence to equilibrium in the context of the Nicholson
blowfly model. [Should any other model(s) be worked out explicitly?]

6 A comparison theorem

Let A be the infinitesimal generator of a C0 semigroup S(·) of positive linear
operators on the partially ordered Banach space X (i.e., 0 ≤ x ∈ X implies
S(t)x ≥ 0 for all t ≥ 0). Fixing an interval I = [−τ,−δ] with 0 < δ < τ ,
we set XX = C(I → X ), partially ordered by taking ξ1 ≤ ξ2 in XX whenever
ξ1(ϑ) ≤ ξ2(ϑ) in X for each ϑ in I. For a continuous X -valued function x(·),
we now denote by xt ∈ XX the restriction of x(t+ ·) to I. For any continuous
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function f : R+×XX → X , we can then consider the vector delay differential
equation

ẋ−Ax = f
(
t, xt

)
(6.28)

for which, much as in (2.12), we have

x(t) = S(t− s)x(s) +

∫ t

s

S(t− r)f (r, xr) dr(6.29)

for t > s. [Given continuous data on [−τ, 0], the method of steps (taking
steps of size δ) then ensures global existence of C1 solutions.]

Theorem 6.1 Suppose fj (j = 1, 2) are continuousfunctions: R+×XX → X
and let xj be solutions of (6.28)j — f = fj for j = 1, 2 — such that x1 ≤ x2

on [s− τ, s]. Suppose f1, f2 satisfy

ξ1 ≤ ξ2in XX implies f1(t, ξ1) ≤ f2(t, ξ2)in X .(6.30)

Then x1(t) ≤ x2(t) for all t ≥ s.

Remark 6.1 It is easy to see that if either f1 or f2 is isotone (x1 ≤ x2 implies
fj(t, x1) ≤ fj(t, x2), then the simple comparison f1 ≤ f2 implies (6.30). Fur-
ther, it should be clear from the proof below that (6.30) need only hold ‘where
relevant’ so, for example, if x2(·) is known, we need to verify (6.30) only for
ξ1 such that ξ1 ≤ ξ2 = [x2]

t for t ∈ [s, T + δ] to ensure that x1(t) ≤ x2(t) for
s ≤ t ≤ T . Finally, we note that essentially the same proof supports con-
sideration of a sandwiching comparison to get propagation of the inequality
x1 ≤ x2 ≤ x3 under a condition on fj (j = 1, 2, 3) generalizing (6.30).

Proof: Let T∗ = max{T : x1(t) ≤ x2(t)fors − τ ≤ t ≤ T}; we have
T∗ ≥ s by assumption and, in contradiction to the desired result, assume
T∗ < ∞. By the definition of T∗ there would then exist t ∈ (T∗, T∗ + δ) for
which x1(t) 6≤ x2(t). The choice of t ensures that x1(t

′) ≤ x2(t
′) for t′ = r+ϑ

with s ≤ r ≤ t and r ∈ I — i.e., [x1]
r ≤ [x2]

r for s ≤ r ≤ t. Thus, using
(6.29), the positivity of S, and (6.30), we have

x1(t) = S(t− s)x1(s) +

∫ t

s

S(t− r)f1 (r, [x1]
r) dr

≤ S(t− s)x2(s) +

∫ t

s

S(t− r)f2 (r, [x2]
r) dr

= x2(t),
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which contradicts the choice of t.

Remark 6.2 In an earlier version of this paper, the result of Lemma 3.1
was obtained by applying a scalar version of Theorem th:comp to compare
the solution x of (1.1) with the solutions of ẋ+ x = fj(x(t− τ)) for f1(r) =
min{r,m} and f2(r) = min{r,M}.

COMMENT: Briefly indicate the relevant comparisons to get Lemma 3.1.
Perhaps also explain the use of decaying exponential solutions in showing,
once one has given a fixed interval I containing the range of x(·), how to
show I(x) ⊂ ψ(I).

COMMENT: If this paper would be rewritten as a successor to the
version now submitted to JMAA, this section would be omitted — although
a further treatment of this generality of comparison and applications might
become still another paper.

7 What is still missing?

COMMENT: This section is not meant to appear in the paper, but is
for our own benefit to see whether we want to expend the effort to try to
obtain any of these results. I have been trying to do that, unsuccessfully, and
at this point have run out of ideas. It is not clear to me whether our best
choice is seek a complete resolution to the problem or to publish what we
have on these issues and turn to consideration of the (much more difficult)
situation when one does not have convergence to equilibrium.

Obviously, if the earlier version already submitted were to be accepted
for JMAA, it would be important to go through this to see how to adapt it:
omitting some duplication (with citation of that paper) and emphasizing the
incremental results. Perhaps that eventuality would make it more important
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to resolve some of the gaps and conjectures noted here.

The presentation of our results has taken τ as fixed and asked about
conditions on the constitutive function giving global asymptotic stability of
the equilibrium solution. Our original conjecture was formulated somewhat
differently: for a fixed constitutive function f(·), think of τ as a parameter
varying ‘up’ from 0. The conjecture was that for τ ≥ 0 we would have global
asymptotic stability precisely for an interval 0 ≤ τ ≤ τ∗. [There is no sug-
gestion here that this τ∗ is related to (2.17), although we might ask how it
relates to that onset of instability for the linearized problem τ0(f

′(0)).] Our
estimates do have this form when formulated as inequalities for τ , but these
are sufficient conditions for global asymptotic stability and we do not know
that they are sharp. In particular, it is not yet shown that one could not
have, for example, a τ -interval of global asymptotic stability, followed by an
interval with some other behavior (possibly existence of periodic solutions,
possibly chaos, . . . ), followed by another interval of global asymptotic sta-
bility before the onset of local instability at τ0(f

′(0)).

We need an estimate (even if only asymptotic as ν → −∞ and as
τ → τ0(ν)) for Z1 = Z1(ν, τ) to make Theorem 4.6 more usable.

It looks almost obvious [but seems open!] that local stability of the equi-
librium cannot imply global asymptotic stability. Specifically, I had con-
jectured that it is possible to have a constitutive function f(·) (say, with
|f ′(0)| < 1 so one has local stability of the equilibrium for arbitrary τ > 0)
such that, for some large τ , there is a periodic solution, clearly precluding
global asymptotic stability. My idea to show this was to begin with, e.g.,
a linear f0(r) = νr (taking ν < −1 and τ = τ0(ν) so one has the periodic
solutions c cos[

√
ν2 − 1 t]) and then perturbing f0 slightly (with respect to

sup-norm) so one gets, e.g., f ′(0) = 0 for which this τ gives local stability.
The hope is that if one restricts perturbation to a small enough neighborhood
of 0 and considers large c (so one is in the perturbation neighborhood only
for a short time), then one will still have a (perturbed) periodic solution for
this perturbed f . So far, I have not succeeded in working out any relevant
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perturbation argument.
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