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Pointwise and Internal Controllability for
the Wave Equation

S.A. Avdonin1 and T.I. Seidman2

Abstract

Problems of internal and pointwise observation and control for the 1-dimensional
wave equation arise in the simulation of control and identification processes in
electrical engineering, flaw detection, and medical tomography. The generally
accepted way of modelling sensors and actuators as pointlike objects leads to
results which may make no apparent physical sense: they may depend, for
instance, on the rationality or irrationality of the location for a point sensor or
actuator. We propose a new formulation of sensor (actuator) action, expressed
mathematically by using somewhat unconventional spaces for data presentation
and processing. For interaction restricted to an interval of length ε, the limit
system of observation (or control) now makes sense when ε tends to zero without
a sensitive dependence on the precise location of the limiting point.

This paper is dedicated to the memory of the late J.L.Lions, whose
seminal work in applied mathematics led, in particular, to the embed-
ding of control-theoretic problems in the context of the modern theory
of partial differential equations and inspired us all.

1. Introduction

We will be considering observation and control of the one-dimensional wave
equation on Q = [0, `]× [0, T ] with observation and control restricted to a small
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spatial subinterval [a, a+ ε] ⊂ (0, `). Our principal interest, comparable to that
of [4], will be on the asymptotics as ε → 0, i.e., as the subinterval shrinks to
the single point {a}. We note that [4] obtains dramatically different results for
different choices of a — essentially depending on number-theoretic properties
of a/` — with a distinction between ‘good’ points for which the asymptotics
behave well and ‘bad’ points for which they do not. The relevance of such
number-theoretic properties was also noted in [2] and, in the somewhat different
context of one-dimensional diffusion equations, in [3] and [6]. The principal
novelty of the present paper is the introduction of a natural contextual change
which makes the asymptotics behave well for all choices of the point a ∈ (0, `).

The wave equation is usually presented in the second-order form

ζtt = ζxx say, with Neumann conditions: ζx = 0 at x = 0, `.(1.1)

However, we take as particularly ‘natural’ — especially for consideration of
observability — the formulation of the dynamics as a first order system

{
ϕt = ψx
ψt = ϕx

or
∂

∂t

 ϕ

ψ

 =

 0 1

1 0

 ∂

∂x

 ϕ

ψ


with ψ = 0 at x = 0, `.

(1.2)

Our viewpoint in this paper will be to work with the problem in this form
for the observation problem and then to use the usual duality to construct the
corresponding control problem for the corresponding inhomogeneous form

{
yt = zx + f
zt = yx + g

or
∂

∂t

 y

z

 =

 0 1

1 0

 ∂

∂x

 y

z

 +

 f

g


with z = 0 at x = 0, ` and y = 0 = z at t = 0.

(1.3)

The physical interpretation of these observation and control problems will be
discussed in the next section.

It is standard that (1.1) and (1.2) are related by taking ψ = ζx and ϕ = ζt
— corresponding physically to momentum and strain. Clearly, if ζ is known
(observed) in the strip Qε = [a, a + ε] × [0, T ], then one also knows both ϕ
and ψ in this strip; the relevant physical energy density is just 1

2
[ϕ2 + ψ2] so

the ‘natural’ topology is in L2 for this pair (ϕ, ψ) with (1.2) constituting a
Hamiltonian system for this energy.

As a normalization, we may use the change of variables x = a+sε (0 ≤ s ≤ 1)
to consider the asymptotics of the optimal controls (ϕ, ψ)ε as functions on the
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fixed space Q∗ = [0, 1] × [0, T ], although implemented as functions on Qε. Our
principal result is that — with appropriate normalization, but without regard for
the choice of a ∈ (0, `) — as ε→ 0 one has convergence on Q∗ of (ϕ, ψ)ε to a
‘control’ associated with the natural limiting point-control problem. For most of
our analysis we consider the model problems, (1.2) and (1.3), with T = 2`, for
which explicit computations are available. Although mostly not treated here,
we remark that these results generalize to times T > 2` (for which we have
controllability), to equations with spatially variable coefficients (as we show in
Section 6), to certain weighted control norms, etc.

2. Physical interpretation: the wave equation revisited

To understand the relation between (1.2), (1.3) and the usual wave equation,
let us briefly sketch the physical derivation. While there are several physical
interpretations leading to that equation, we will focus on longitudinal vibrations
of an elastic rod.

We begin by taking q = q(x, t) to be the position at time t of the material
point labelled by x ∈ [0, `] in the reference configuration; we assume that the
rod remains straight with the coordinate system aligned with the rod and with
its origin at one end. By Newton’s Law we have

d

dt
[momentum] = [total force]

= − gradientwith resp. to q [PE] + [external force].
(2.1)

We will assume that we are remaining in the neighborhood of a stable equi-

librium state, given by
◦
q, so the potential energy PE of the system is given

approximally quadratically by

PE (q) ≈ 1

2

`∫
0

a(x)
(

[q−
◦
q]x

)2

dx(2.2)

where a(·) represents some possible variation in the material properties along
the rod. Then

∇q [PE] : h 7−→ d

dσ
[PE(q + σh)]

∣∣∣∣∣
σ=0

≈
`∫

0

a(x)[q−
◦
q]x hx dx

= −
`∫

0

(
a(x)[q−

◦
q]x

)
x
h dx+ [boundary terms].
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Taking the boundary conditions so these boundary terms vanish, we make the
usual assumption leading to linear dynamics — that the state stays close enough

to
◦
q for (2.2) to be taken as exact: −∇q[PE]= (a[q−

◦
q]x)x so (2.1) becomes

(ρqt)t = (a[q−
◦
q]x)x + Fext(2.3)

For simplicity of exposition, we considering a homogeneous rod for which, with
appropriate choices of units, we may take ρ ≡ 1 and a ≡ 1 in (2.3). Note that
the relevant aspects of the state are then

[momentum] = qt [stress] = [q−
◦
q]x

and we will assume ‘free’ endpoints so the boundary conditions for (2.3) are:

[q−
◦
q]x = 0 at x = 0, `.

For observation, we will take ζ to be the ‘deviation from equilibrium’: ζ =

q−
◦
q and, since the equilibrium

◦
q is here independent of t (i.e.,

◦
qt≡ 0 (typically,

◦
q=
◦
q (x) = x) so ζt = qt and we impose no external forces, we alternatively have

(1.1): ζtt = ζxx or, taking ϕ = [momentum] = ζt and ψ = [stress] = ζx , have the
physical law ϕt = ζx coupled with the differentiation identity ψt = ζxt = ζtx = ϕx
— i.e., (1.2).

As already noted in the Introduction, if q is known in a strip Qε so ζ = q−x
is known there, then ζt =: ϕ and ζx =: ψ are also known. The problem we will
discuss in Section 3 corresponds either to this computation by differentiation of
the observation — with q, ζ ∈ H1(Qε) so (ζt, ζx) ∈ Vε — or to independent mea-
surements of velocity (the same as momentum, here, since ρ ≡ 1) and of stress.
The latter seems the more meaningful interpretation in a context considering
point observation, for which spatial differentiation becomes problematic.

We now consider derivation of the controlled wave equation

wtt = wxx + F with wx = 0 at x = 0, `.(2.4)

Traditionally, the only form of control under consideration has been the im-
position of the external force Fext = f . We note, however, that the advent
of so-called ‘smart materials’ suggests an additional mode of possible control

— by altering
◦
q. [E.g., this might be accomplished for shape memory alloys

by locally adjusting the temperature; we assume that, in our context of small
deviation from equilibrium, we would only consider temperature changes small
enough as not to make relevant the local structural changes in the PE leading

to hysteresis.] It is, of course,
◦
p:=

◦
qt which is new here.
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We now take w := [deviation] = q−
◦
q, so we get y := [momentum] = qt =

wt+
◦
p with z := [stress] = wx. Then we obtain from (2.3)

wtt =
[
qt−

◦
p
]
t

= wxx + Fext−
◦
pt

— which is just (2.4) with F := Fext−
◦
pt. Similarly,

yt = zx + Fext

zt = wxt = wtx = yx−
◦
px

— which is just (4.1) with f = Fext and g = −
◦
px . We thus have the relation

γ := F − f = −
◦
pt=

∫ x

gt

(
or g =

∫ t

γx

)
(2.5)

between the controlled wave equation (2.4) and the first order system (1.3).
For the control supports to lie in the interval [a, a + ε] (more precisely, in the

strip Qε), we are assuming that
◦
q is independent of t (i.e.,

◦
p= 0) for x 6∈ [a, a+ε]

so both g and γ have support in Qε. Note that the initial condition: w = 0
at t = 0 corresponds to the assumption that the rod is in equilibrium at t = 0
with a related interpretation of the velocity condition: wt = 0 at t = 0.

From (2.5) we anticipate that γ (and so F in (2.4)) must be considered
distributionally. For future reference we will need an adjoint computation for
this formulation. Suppose w and ζ are (smooth) solutions, respectively of (2.4)
and of its homogeneous form; note that ζ (and so also ζt) is periodic in t with
period T = 2`. Then

`∫
0

[wxζx + wtζt] dx

∣∣∣∣∣∣
t=T

=

`∫
0

[wxζx + wtζt] dx

∣∣∣∣∣∣
T

0

=
∫
Q

[wxζx + wtζt]t dx dt

=
∫
Q

[wxtζx + wxζxt + (wxx + F ) ζt + wt (ζxx)] dx dt

=
∫
Q

[wxζt + wtζx]x dx+
∫
Q
Fζt dx dt

=
∫
Q
Fζt dx dt =

∫
Q
fζt dx dt−

∫
Q

◦
pt ζt dx dt .

Integrating by parts twice, we now note that

−
∫
Q

◦
pt ζt dx dt = −

∫
Q

◦
p ζtt dx dt+

`∫
0

◦
p ζt dx

∣∣∣∣∣∣
T

0

= −
∫
Q

◦
p ζxx dx dt+

`∫
0

◦
p ζt dx

∣∣∣∣∣∣
T

0

=
∫
Q

◦
px ζx dx dt+

T∫
0

◦
p ζx dx

∣∣∣∣∣∣
`

0

+

`∫
0

◦
p ζt dx

∣∣∣∣∣∣
T

0

.
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Since ζx = 0 at x = 0, `, the second integral on the right vanishes. Assuming
◦
p

would also be periodic in t with period T = 2` (effectively, that we view g as
repeated with this periodicity), we then obtain

`∫
0

[wxζx + wtζt] dx

∣∣∣∣∣∣
t=T

=
∫
Q

[fζt + gζx] dx dt .(2.6)

Without providing any physical heuristics for this, we will stipulate that the
L2-norm (on Qε) provides an appropriate measure for the ‘cost’ of implementing
the external force Fext = f ; similarly, we stipulate that an H1(Qε) norm is

appropriate for
◦
p — more precisely, the L2-norm for

◦
px. Thus, ‘optimality’ of

the control will mean

‖f‖2L2(Qε)
+ ‖γ‖2∗ = min

with ‖γ‖∗ = ‖
◦
pt ‖∗ := ‖

◦
px ‖L2(Qε) = ‖g‖L2(Qε).

(2.7)

Although (2.4) appears to involve only a single ‘control’ F , the split into f and
γ seems entirely natural in this context.

Remark. One could insert in (2.7) a coefficient µ for ‖g‖L2(Qε) which would
weight the relative difficulty of the two modes of control. This would amount
to changing to a new equivalent norm for the space Z below and the evolution
operator for the observation system (1.2) would no longer be unitary so the
computations corresponding to taking µ 6= 1 would be much more complicated.
However, we would expect that any other choice for 0 < µ <∞ would lead to
essentially similar results.

The traditional implicit assumption that the equilibrium is constant in t —

i.e., that
◦
p≡ 0 so we have simply: F = Fext — corresponds to taking µ = ∞

in (2.7) and we may view the results of [4] as associated with a double limit:
first let µ→∞ and then let ε→ 0.

3. Formulation and preliminary estimates

We start with the observability problem for the first order system (1.2). It
is easy to see that energy is conserved: for any (finite energy) solution one has

E(ϕ, ψ) = E(ϕ, ψ; τ) :=

`∫
0

[ϕ2(x, τ) + ψ2(x, τ)] dx = const(3.1)

6



(independent of τ , since dE/dτ = 0). Thus the system induces a C0 group of
unitary operators {G(t)} on the space W := L2(0, `) × L2(0, `). We note that
the infinitesimal generator of G(·) is

A =

 0 1

1 0

 ∂

∂x
with

D(A) =


 ϕ

ψ

 ∈ H1([0, `]→ W ) : ψ = 0 at 0, `


(3.2)

and that G(·) is periodic in t with period 2` — i.e.,

G(2`) = G(0) = 1W

as may be seen from the representation of the solution to (1.2) in the ‘separation
of variables’ form

ϕ(x, t) =
∞∑
n=0

(
αn sin

πnt

`
+ βn cos

πnt

`

)
cos

πnx

`
,

ψ(x, t) =
∞∑
n=1

(
αn cos

πnt

`
− βn sin

πnt

`

)
sin

πnx

`
,

(3.3)

with {αn}, {βn} ∈ `2.

Interchanging the roles of t and x, we note, on the other hand, that the
equation in (1.2), considered for 0 < t < T = 2` with periodicity conditions:

ϕ
∣∣∣
t=0

= ϕ
∣∣∣
t=T

, ψ
∣∣∣
t=0

= ψ
∣∣∣
t=T

,(3.4)

induces a C0 unitary group {Ĝ(x)} on the space Z := L2(0, T )×L2(0, T ) with

its usual norm; the infinitesimal generator of Ĝ(·) is B =

 0 1

1 0

 ∂

∂t
with the

periodicity conditions (3.4). Note that

G(t) :

 ϕ

ψ

∣∣∣∣∣∣
t=0

7−→

 ϕ

ψ

∣∣∣∣∣∣
t

Ĝ(x) :

 ϕ

ψ

∣∣∣∣∣∣
x=0

7−→

 ϕ

ψ

∣∣∣∣∣∣
x

for
{
ϕt = ψx
ψt = ϕx

etc.

We easily verify the unitarity of Ĝ: just integrate by parts to check that

Γ(ϕ, ψ) = Γ(ϕ, ψ; ξ) :=

T∫
0

[ϕ2(ξ, t) + ψ2(ξ, t)] dt = const(3.5)
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(independent of ξ). For consistent choices of initial data, the solutions of (3.4)
and of (1.2) coincide in Q := [0, `]× [0, T ]. Since

T E(ϕ, ψ) =
∫
Q

(
ϕ2 + ψ2

)
dx dt = `Γ(ϕ, ψ)

and we have taken T = 2`, we have the identity

Γ(ϕ, ψ) = 2E(ϕ, ψ) .(3.6)

For ε > 0 small enough that [a, a+ε] ⊂ (0, `), we set Qε := [a, a+ε]× [0, T ]
and Vε := L2([a, a + ε] → Z); we introduce the observation operator Oε as
follows:

Allowing for time-reversibility, one has a solution operator for (1.2) — with
‘initial’ condition specified at t = T — followed by restriction to Qε:

Vε : W → [L2(Q)]2 ↪→ Vε :

 ϕ

ψ

∣∣∣∣∣∣
t=T

7→

 ϕ

ψ

 7→
 ϕ

ψ

∣∣∣∣∣∣
Qε

(3.7)

with ∥∥∥∥∥∥
 ϕ

ψ

∣∣∣∣∣∣
Qε

∥∥∥∥∥∥
2

Vε

=

a+ε∫
a

T∫
0

[
ϕ2(x, t) + ψ2(x, t)

]
dt dx

= εΓ(ϕ, ψ) = 2εE(ϕ, ψ) = 2ε

∥∥∥∥∥∥
 ϕT

ψT

∥∥∥∥∥∥
2

W

.

(3.8)

From (3.8) we see that the operator (1/
√

2ε)Vε : W → Vε is norm-preserving
and so is unitary to its range Mε = { restrictions to the strip Qε of solutions
of (1.2) with data in W }. Thus, [(1/

√
2ε)Vε]∗ is a left inverse of (1/

√
2ε)Vε —

an actual inverse if we restrict Vε to the (necessarily closed) subspace Mε ⊂ Vε.
We may then set Oε := (1/2ε)[Vε]∗ : Vε → W and, for solutions of the system
(1.2), one has

Oε :=
1

2ε
V∗ε :

 ϕ

ψ

∣∣∣∣∣∣
Qε

7→

 ϕ

ψ

∣∣∣∣∣∣
t=T

since

 ϕ

ψ

∣∣∣∣∣∣
Qε

∈Mε(3.9)

so Oε
∣∣∣
Mε

is the desired observation operator — Oε
∣∣∣
Mε

= [Vε : W → Mε]
−1 —

for the system with observation on Qε. Note that
√

2εOε is unitary from Mε

to W .
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From the continuity in x of

 ϕ(x, ·)
ψ(x, ·)

 as an element of Z — i.e., the

continuity of x 7→ Ĝ(x), taking for Ĝ the strong topology of operators on Z —
we note that we can also consider pointwise observation at x = a, defining

V0 : W → C([0, `]→ Z)→ Z

:

 ϕT

ψT

 =

 ϕ

ψ

∣∣∣∣∣∣
t=T

7→

 ϕ

ψ

 7→
 ϕ

ψ

∣∣∣∣∣∣
x=a

(3.10)

for arbitrary a ∈ (0, `) with∥∥∥∥∥∥V0
 ϕT

ψT

∥∥∥∥∥∥
2

Z

= Γ(ϕ, ψ) = 2E(ϕ, ψ) = 2

∥∥∥∥∥∥
 ϕT

ψT

∥∥∥∥∥∥
2

W

.(3.11)

We see from (3.11) that (1/
√

2)V0 is norm-preserving: W → Z, so we may
set O0 := 1

2
V∗0 : Z → W and have

O0

∣∣∣
M0

= [V0 : W →M0]
−1 : M0 ⊂ Z → W :

 ϕ

ψ

∣∣∣∣∣∣
x=a

7→

 ϕ

ψ

∣∣∣∣∣∣
t=T

.

Thus, O0|M0
is the observation operator for the system with point observation

at x = a. Note that
√

2O0 is unitary from M0 to W .

4. Control problems

We turn now to control problems and first consider the inhomogeneous
boundary value problem on Q = [0, `]× [0, T ]

∂

∂t

 y

z

 =

 0 1

1 0

 ∂

∂x

 y

z

+

 f

g


with z = 0 at x = 0, ` and y = 0 = z at t = 0.

(4.1)

It is well known that (4.1) has a unique solution

 y

z

 in C([0, T ]→ W ) for

each

 f

g

 in Vε so we can evaluate at t = T and associate with this system

the operator

Uε : Vε ↪→ L2(Q)→ W :

 f

g

 7→
 y

z

∣∣∣∣∣∣
t=T

.(4.2)
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We must also consider the pointwise problem:

∂

∂t

 y

z

 =

 0 1

1 0

 ∂

∂x

 y

z

+ δ(x− a)

 f0(t)

g0(t)


with z = 0 at x = 0, ` and y = 0 = z at t = 0.

(4.3)

It is easily seen that (4.3) has a unique solution

 y

z

 in C([0, T ] → W ) for

each

 f0

g0

 in Z so, as with (4.2), we can introduce the associated solution

operator

U0 : Z → W :

 f0

g0

 7→
 y

z

∣∣∣∣∣∣
t=T

.(4.4)

We next wish to show controllability: that, for an arbitrary target state yT

zT

 ∈ W , there is some forcing term for (4.1) (or for (4.3), respectively) for

which this target is attained at time t = T , i.e., to show that Vε : Vε → W and
V0 : Z → W are surjective. We will then define control operators by selecting
this forcing term (control), for each target in W , to have minimal norm.

A standard computation 3 shows that Uε and Vε are adjoints. To see this,

let

 ϕ

ψ

 and

 y

z

 be smooth (classical) solutions of (1.2) and of (4.1),

respectively. Using integration by parts we have

0 =
∫
Q

〈
∂

∂t

 ϕ

ψ

−
 0 1

1 0

 ∂

∂x

 ϕ

ψ

 ,
 y

z

〉 dx dt

= −
∫
Q

〈 ϕ

ψ

 ,
∂

∂t

 y

z

−
 0 1

1 0

 ∂

∂x

 y

z

〉 dx dt

+

`∫
0

〈 ϕ

ψ

 ,

 y

z

〉∣∣∣∣∣∣
t=T

t=0

dx−
T∫
0

〈 ϕ

ψ

 ,

 y

z

〉∣∣∣∣∣∣
x=`

x=0

dt

= −
∫
Q

〈 ϕ

ψ

 ,

 f

g

〉 dx dt +

`∫
0

〈 ϕ

ψ

 ,

 y

z

〉∣∣∣∣∣∣
t=T

dx

3Notationally, we will use here 〈·, ·〉 for the IR2 inner product and (·, ·) — with a
subscript — for the inner products of W and of Vε.
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so
`∫

0

〈 ϕ

ψ

 ,

 y

z

〉∣∣∣∣∣∣
t=T

dx =

a+ε∫
a

T∫
0

〈 ϕ

ψ

 ,

 f

g

〉 dt dx.(4.5)

Recalling the definitions of the solution maps Vε and Uε, this identity becomes ϕT

ψT

 , Uε
 f

g


W

=

Vε
 ϕT

ψT

 ,
 f

g


Vε

(4.6)

and, since smooth solutions are dense, this extends by continuity to all func-
tions from W, Vε — i.e., [Uε]∗ = Vε, as asserted above. An essentially identical
argument applies to (4.3) to give ϕT

ψT

 , U0
 f0

g0


W

=

V0
 ϕT

ψT

 ,
 f0

g0


Z

for functions from W, Z. Combining, we have shown that

[Uε : Vε → W ]∗ = Vε : W → Vε and [U0 : Z → W ]∗ = V0 : W → Z .(4.7)

Since we already know that (1/
√

2ε)Vε is norm-preserving, hence injective,
it follows that Uε must be surjective to W and that (1/

√
2ε)Uε is also norm-

preserving from [N (Uε)]⊥ = R(U∗ε ) = Mε, which selects the control of minimum
norm. Much as for Oε earlier, we obtain the desired right inverse of Uε by
using the control operator

Cε := (1/2ε)Vε : W →Mε [⊂ Vε ↪→ [L2(Q)]2]

:

 yT

zT

 7−→
 f

g

 :=

 ϕ

ψ

∣∣∣∣∣∣
Vε

(4.8)

where

 ϕ

ψ

 is given by the homogeneous equation (1.2) with

 ϕ

ψ

 =

 yT

zT


at t = T . This inverts (4.2) so Uε Cε = 1W , i.e., the control Cε

 yT

zT

 does

determine a solution satisfying y

z

∣∣∣∣∣∣
t=T

=

 yT

zT

 .(4.9)
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This proves controllability of the system (4.1) and, indeed, provides the control

with minimal Vε norm: for a given target state

 yT

zT

 ∈ W , we solve the

initial boundary value problem (1.2) with the ‘initial’ condition ϕ

ψ

∣∣∣∣∣∣
t=T

=

 yT

zT

(4.10)

and then use the resulting  fε

gε

 :=
1

2ε

 ϕ

ψ

∣∣∣∣∣∣
Qε

(4.11)

as a control in the system (4.1) to get (4.9).

Similarly, for the point control problem we have

C0 := (1/2)V0 : W →M0 [⊂ Z ]

:

 yT

zT

 7−→
 f0

g0

 :=

 ϕ

ψ

∣∣∣∣∣∣
x=a

(4.12)

inverting (4.4) so U0 C0 = 1W with C0 giving the control of minimum norm in Z.
In view of (3.8), (3.11), we note that these minimum norm controls satisfy∥∥∥∥∥∥ Cε

 yT

zT

∥∥∥∥∥∥
Vε

=
1

2ε

∥∥∥∥∥∥
 yT

zT

∥∥∥∥∥∥
W

and

∥∥∥∥∥∥ C0
 yT

zT

∥∥∥∥∥∥
Z

=
1

2

∥∥∥∥∥∥
 yT

zT

∥∥∥∥∥∥
W

(4.13)

for each target state in W .

5. Convergence as ε→ 0

For any fixed target

 yT

zT

 ∈ W , we let

 fε

gε

 be the optimal control

pair Cε

 yT

zT

 ∈ Vε ↪→ L2(Q) and let

 yε

zε

 be the corresponding controlled

solution of (4.1) using this control; similarly, we let

 f0

g0

 := C0

 yT

zT

 ∈
Z and let

 y0

z0

 be the solution of (4.3) corresponding to that control. In

12



this section we wish to show convergence of these optimal controls — when
appropriately scaled in the fixed space V∗ := C([0, 1] → Z) — and also to
show the strong convergence in C([0, T ] → W ) of the corresponding controlled
solutions.

For the first, we begin by introducing a correspondence Tε between functions
on Qε = [a, a+ ε]× [0, T ] and functions on the fixed domain Q∗ = [0, 1]× [0, T ].
Thus we set

[Tεf ] (s) :=
√
ε f(a+ εs) for s ∈ [0, 1]

when [x 7→ f(x)] is given for x ∈ [a, a + ε]. Overloading notation somewhat,
we use the same symbol Tε for several maps: considering this as an operator:
L2(a, a+ ε)→ L2(0, 1) and also as an operator: C[a, a+ ε]→ C[0, 1] — as well
as operators for corresponding Z-valued functions:

L2(Qε → IR2) = L2([a, a+ ε]→ Z) =: Vε

−→ L2(Q∗ → IR2) = L2([0, 1]→ Z),

[C([0, `]→ Z)
restriction−→ ] C([a, a+ ε]→ Z)

−→ C([0, 1]→ Z) =: V∗ .

Similarly, we define T0 : IR→ C[0, 1] ↪→ L2(0, 1) by

[T0r] (s) := r (independent of s) for s ∈ [0, 1]

and again overload notation to consider this also as denoting operators:

Z −→ V∗ := C([0, 1]→ Z) ↪→ L2(Q∗ → IR2) = L2([0, 1]→ Z).

Note that one has ‖Tεf‖ = ‖f‖ and ‖T0f‖ = ‖f‖ for the L2-norms so, in view
of (4.13), we have∥∥∥∥∥∥TεCε

 yT

zT

∥∥∥∥∥∥
L2([0,1]→Z)

=

∥∥∥∥∥∥T0C0
 yT

zT

∥∥∥∥∥∥
L2([0,1]→Z)

=
1√
2

∥∥∥∥∥∥
 yT

zT

∥∥∥∥∥∥
W

.

This is already sufficient to show weak convergence (for a subsequence; to some
limit) in L2(Q∗ → IR2).

However, it is now easy to obtain the desired strong convergence in V∗ from
our characterizations of the control operators Cε = (1/2ε)Vε, C0 = (1/2)V0 in
terms of the solution operators for the homogeneous equation (1.2). We need
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simply note thatTε
 fε

gε

 (s, ·) =

 ϕ

ψ

 (a+ εs, ·)

ε→0−→

 ϕ(a, ·)
ψ(a, ·)

 =

Tε
 f0

g0

 (s, ·)

(5.1)

with the convergence (uniform: [0, 1] → Z) following here from the continu-

ity: [0, `] → Z of the solution

 ϕ

ψ

 of (1.2) with

 ϕ

ψ

∣∣∣∣∣∣
t=T

=

 yT

zT

, i.e.,

from the strong continuity in x of [Ĝ(x) : Z → Z].

We remark in passing that it is now not difficult, with this in hand, to
show the convergence, as support shrinks, of the controls themselves to the

limit

 f0

g0

 δ(x − a) with convergence in the sense of distributions — more

precisely, in the weak-* topology of the dual space to C([0, `] → Z). We omit
this argument, since it is closely related to the argument we are about to
present.

We now proceed to show the strong convergence in C([0, T ] → W ) of the

controlled solutions. To this end, taking any τ ∈ (0, T ), we let

 p

q

 ,
 ϕ

ψ


be the solutions of the homogeneous equation (1.2) such that p

q

∣∣∣∣∣∣
t=τ

=

 yε

zε

−
 y0

z0


t=τ

and

 ϕ

ψ

∣∣∣∣∣∣
t=T

=

 yT

zT

 .

Much as in obtaining (4.5) and using (4.8), (4.12), we then get∥∥∥∥∥∥
 yε

zε

−
 y0

z0


t=τ

∥∥∥∥∥∥
2

W

= E(p, q)

=

τ∫
0

 1

2ε

a+ε∫
a

〈 p

q

 ,
 ϕ

ψ

〉 dx − 1

2

〈 p

q

 ,
 ϕ

ψ

〉∣∣∣∣∣∣
x=a

 dt
=

1

2ε

a+ε∫
a

χτ
 p

q

 ,
 ϕ

ψ


Z

−

χτ
 p

q

 ,
 ϕ

ψ


Z

∣∣∣∣∣∣
x=a

 dx

14



where χτ is the operator on Z setting values to 0 for t > τ . Now observe that p

q

∣∣∣∣∣∣
x

= Ĝ(x− a)

 p

q

∣∣∣∣∣∣
x=a

, etc.,

and that the continuity of [r 7→ Ĝ(r)] (with [Ĝ(r)]∗ = Ĝ(−r) so also continuous
in r to the strong operator topology) gives∥∥∥∥∥∥

[
[Ĝ(r)]∗χτ Ĝ(r)− χτ

]  ϕ

ψ

∣∣∣∣∣∣
a

∥∥∥∥∥∥
Z

≤ δ(ε)

with δ(ε)→ 0 as ε→ 0 and from this we have∥∥∥∥∥∥
 yε

zε

−
 y0

z0


t=τ

∥∥∥∥∥∥
W

≤ δ(ε)√
2
.

This, of course, gives the desired convergence in C([0, T ]→ W ) of the controlled
solutions.

It is interesting also to consider an alternative argument for this convergence.
Note that  ξn(x)

ζn(x)

 =

√
1

`

 cosnx

i sinnx

 , λn = in , n ∈ ZZ

are the eigenfunctions and eigenvalues of the operator A of (3.2). This family

forms an orthonormal basis for W so the functions

 yε

zε

,

 y0

z0

 can be

expanded as yε

zε

 =
∑
n

cεn(t)

 ξn(x)

ζn(x)

 ,

 y0

z0

 =
∑
n

c0n(t)

 ξn(x)

ζn(x)

 ,(5.2)

where, using (4.8), (4.12),

cεn(t) =

t∫
0

eλn(t−τ)
1

2ε

a+ε∫
a

〈 ϕ(x, τ)

ψ(x, τ)

 ,
 ξn(x)

ζn(x)

〉 dx dτ,

c0n(t) =

t∫
0

eλn(t−τ)
1

2

〈 ϕ

ψ

 ,
 ξn

ζn

〉∣∣∣∣∣∣
x=a

dτ.

(5.3)
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Noting that

 yε

zε

 and

 y0

z0

 are in C([0, T ] → W ), the expansions (5.2)

give ∑
n

|cεn(t)|2 =

∥∥∥∥∥∥
 yε(·, t)
zε(·, t)

∥∥∥∥∥∥
2

W

,
∑
n

|c0n(t)|2 =

∥∥∥∥∥∥
 y0(·, t)
z0(·, t)

∥∥∥∥∥∥
2

W

(5.4)

while from (5.3) we have∥∥∥∥∥∥
 yε(·, t)
zε(·, t)

 −
 y0(·, t)
z0(·, t)

∥∥∥∥∥∥
2

W

=
∑
n

|cεn(t)− c0n(t)|2 =
∑
|n|>N

+
∑
|n|≤N

.

Choosing N big enough, we can make the first sum small; then choosing ε small
enough, we can make each term of the (finite) second sum small, uniformly
in t ∈ [0, T ], since

cεn(t)− c0n(t)

=
1

2

∫ t

0
eλn(t−τ)

∫ 1

0

〈 ϕ̂ε

ψ̂ε

 ,
 ξ̂n

ζ̂n

〉 − 〈 ϕ̂0

ψ̂0

 ,
 ξ̂n

ζ̂n

∣∣∣∣∣∣
s=0

〉 ds dτ
and we can again use the fact that x 7→ (ϕ, ψ) is continuous to Z. As with
the previous argument, this shows that

sup
0≤t≤T

∥∥∥∥∥∥
 yε(·, t)
zε(·, t)

 −
 y0(·, t)
z0(·, t)

∥∥∥∥∥∥
2

W

−→ 0 as ε→ 0.

6. Another approach to the wave equation

Let us start with the observation problem for the equation

vtt = vxx , v = 0 at x = 0, `

v
∣∣∣
t=T

= v0 ∈ L2(0, `), vt
∣∣∣
t=T

= v1 ∈ H−1(0, `) .

Then
{v, vt} ∈ C([0, T ]→ W ) with W = L2(0, `)×H−1(0, `)

and
{v, vx} ∈ C([0, `]→ Z) with Z = L2(0, T )×

(
H1(0, T )

)′
.

Introduce the observation operator Oε acting from W to Vε := L2([a, a+ε]→ Z)
by the rule

Oε{v0, v1} = {v, vx}|Qε
.
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Let us set
ωn = nπ/` , ϕn(x) =

√
2/` sinωnx , n ∈ IN .

and
v0(x) =

∑
n

αnϕn(x) , v1(x) =
∑
n

βnϕn(x) .

Then

v(x, t) =
∑
n

(
αn cosωn(T − t) + βn

sinωn(T − t)
ωn

)
ϕn(x) ,

v(x, t) =
∑
n

(
αn cosωn(T − t) + βn

sinωn(T − t)
ωn

)
ϕ′n(x)

and

‖Oε{v0, v1}‖2 =
∫ a+ε

a
dx
[
‖v(·, x)‖2L2(0,T ) + ‖vx(·, x)‖2(H1(0,T ))′

]
�
∫ a+ε

a
dx
∑
n

(
|αn|2 + |βn/ωn|2

) (
sin2 ωnx+ cos2 ωnx

)
� ε

[
‖v0‖2L2(0,`) + ‖v1‖2H−1(0,`)

]
.

Consider now the control problem for the equation

wtt = wxx + F ε ;w = 0 at x = 0, `

w = wt = 0 at t = 0 .

If F ε ∈ L2(Qε) then

{w,wt} ∈ C([0, T ]→ W ′) with W ′ = H1
0 (0, `)× L2(0, `) .

Let us represent F ε in the form f ε(x, t) + gε(x, t) and note that∫ `

0
gε(x, t)v(x, t) dx = Gε(x, t)v(x, t)

∣∣∣∣∣x=`x=0 −
∫ `

0
Gε(x, t)vx(x, t) dx

= −
∫ `

0
Gε(x, t)vx(x, t) dx

where Gε(x, t) =
∫ t
0 g

ε(x, τ) dτ . Using integration by parts we have∫ `

0
[wvt − wtv]t=T dx =

∫ a+ε

a

∫ T

0
[f εv −Gεvx] dtdx .

Then for
{f ε, Gε} ∈ L2

(
[a, a+ ε];L2(0, T )×H1(0, T )

)
= Vε

′

we get
〈w(·, T ), v1〉 − 〈wt(·, T ), v0〉(6.1)
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where 〈·, ·〉 here denotes the duality between H−1(0, `) and H1
0 (0, `).

Introduce the operator Uε acting from Vε
′ to W ′ by the rule f ε

−Gε

 7→
 w(·, T )

−wt(·, T )

 .

Then Uε = (Oε)∗ and

Cε :=
(
Uε
∣∣∣
Mε

)−1
=
(
Oε∗

∣∣∣
Mε

)−1
and ‖Cε‖ � 1/

√
ε.

Let
w0(x) =

∑
n

anϕn(x) , w1(x) =
∑
n

bnϕn(x) .

Then, using (6.1), we obtain the solution of the control problem

w(·, T ) = w0 , wt(·, T ) = w1

in the form

f ε(x, t) =
∑
n

ε−1 [bn cosωn(T − t) + anωn sinωn(T − t)] ϕn(x)|[a,a+ε] ,

Gε(x, t) =
∑
n

ε−1 [bn cosωn(T − t) + anωn sinωn(T − t)] ϕ′n(x)|[a,a+ε] .

We can prove, as we have done for the first order system, that the solution wε

tends to the solution of the pointwise optimal control problem in the norm of
C([0, T ]→ W ′) as ε→ 0.

Remark: All the results of this section continue to be valid for equations with
x-dependent coefficients

∂

∂t

 y

z

 =

 0 1

1 0

 ∂

∂x

 y

z

+Q(x)

 y

z

+

 f

g

(6.2)

where Q(x) is a continuous 2 × 2 matrix-valued function on [0, `]; we again
consider the boundary conditions

z
∣∣∣
x=0

= z
∣∣∣
x=`

= 0 ,(6.3)

and initial conditions
y
∣∣∣
t=0

= z
∣∣∣
t=0

= 0.(6.4)

Since the situation is quite similar to those above for Q ≡ 0, we need only
sketch the arguments.
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The corresponding dual system is then

∂

∂t

 ϕ

ψ

 =

 0 1

1 0

 ∂

∂x

 ϕ

ψ

+Q∗(x)

 ϕ

ψ

(6.5)

with
ψ
∣∣∣
x=0

= ψ
∣∣∣
x=`

= 0.(6.6)

The corresponding family


 ξn

ζn

 forms a Riesz basis in W with a dual

basis


 ξ̃n

ζ̃n

; the corresponding family
{
eλnt

}
is a Riesz basis in L2(0, T ).

If  ϕ

ψ

∣∣∣∣∣∣
t=T

=

 ϕT

ψT

 ∈ W
then  ϕ

ψ

 ∈ C([0, T ]→ W )
⋂
C([0, T ]→ Z)

as can easily be proved using, for instance, the Fourier method and the repre-
sentation  ϕ(x, t)

ψ(x, t)

 =
∑
n

αne
λn(t−T )

 ξn(x)

ζn(x)

 .
As before, we can introduce the solution operator for (6.5)

Vε :

 ϕ

ψ

∣∣∣∣∣∣
t=T

7→

 ϕ

ψ

∣∣∣∣∣∣
Qε

.

Since 0 < infx,n |ξn(x)|2 ≤ supx,n |ξn(x)|2 <∞ , one has

∥∥∥∥∥∥Vε
 ϕT

ψT

∥∥∥∥∥∥
2

=

a+ε∫
a

T∫
0

(
|ϕ(x, t)|2 + |ψ(x, t)|2

)
dt dx

�
a+ε∫
a

∑
n

(
|ξn(x)|2 + |ζn(x)|2

)
|αn|2 dx

� ε
∑
n

|αn|2 � ε

∥∥∥∥∥∥
 ϕT

ψT

∥∥∥∥∥∥
2

.
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Next, introduce the operator

Uε :

 f

g

 7→
 y

z

∣∣∣∣∣∣
t=T

from Vε = L2([a, a + ε];Z) to W . As with (3.9), (4.6), we can prove that
Uε = (Oε)∗. Then

Cε :=
(
Uε
∣∣∣
Mε

)−1
=
(
Oε∗

∣∣∣
Mε

)−1
and ‖Cε‖ � 1/

√
ε.

In terms of the representation y

z

∣∣∣∣∣∣
t=T

=

 yT (x)

zT (x)

 =
∑
n

βn

 ξn(x)

ζn(x)

 ∈ W,

for the prescribed terminal state we have

Cε

 yT

zT

 =:

 fε

gε

 =
∑
n

βnθn(t)
a+ε∫
a

(
|ξn(x)|2 + |ζn(x)|2

)
 ξn(x)

ζn(x)


∣∣∣∣∣∣∣∣∣∣∣∣
Qε

,

where {θn(t)} is the Riesz basis in L2(0, T ) dual to
{
eλn(t−T )

}
. Similarly, the

optimal pointwise control now has the form

C0

 yT

zT

 =:

 f0

g0

 =
∑
n

βnθn(t)

|ξn(a)|2 + |ζn(a)|2

 ξn(a)

ζn(a)

∣∣∣∣∣∣
Qε

.

Inserting these explicit formulas in the equations (and noting the continuity in x
of |ξn(x)|2 + |ζn(x)|2) shows that yε

zε

→
 y0

z0

 in C([0, T ]→ W ) as ε→ 0.
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