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Abstract
For (coupled systems of) partial differential equations for which null-

control is possible in arbitrarily short time, the typical blowup rate for the
control cost is exponential in 1/T . It is shown how to derive this rate for a
variety of systems, including the thermoelastic system with control restricted
to a small patch in the domain and to a single component (thermal, displace-
ment, or velocity).
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1 Introduction

We consider linear autonomous control systems of the form

ẋ = Ax + B u x(0) = x0 (1.1)

where A generates a C0 semigroup S(·) on the reflexive state space X and
B : U → X is a suitable control operator x = x(·;x0, u) will denote the
(mild) solution of (1.1):

x(t;x0, u) = S(t)x0 +

∫ t

0

S(t− τ)Bu(τ) dτ (1.2)
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for 0 ≤ t ≤ T and1 u ∈ UT . Our concern is with blowup as T → 0 of the
nullcontrol cost C(T ) = C(T ;A,B) for the linear autonomous control system
(1.1) — i.e., the minimal constant such that{

For each x0 ∈ X there exists u(·) ∈ UT with

‖u(·)‖ ≤ C(T ) |x0| x(T ;x0, u) = 0
(1.3)

The blowup rate of controls as one attempts this with T → 0 was treated
for the finite dimensional case X = RK in [13, 15]; our interest here is in the
infinite dimensional case.

For reference, we note without proof the standard duality.

Theorem 1.1. For (1.1) as above, (1.3) is equivalent to the observation
inequality:

|y(0)| ≤ C(T )

[∫ T

0

|B∗y(t)|2 dt

]1/2

(1.4)

for every X∗-valued solution y on [0, T ) of the adjoint equation:

−ẏ = A∗y (i.e., y(t) = S∗(s)y(t + s)) (1.5)

[If X∗ is an S∗-invariant subspace of X∗, then (1.4) for X∗-valued solutions
of (1.5) is equivalent to (1.3) holding for all x0 ⊥ X∗.]

It was shown in [12], for the one-dimensional heat equation, that

C(T ) ≤ ec/T for small T > 0. (1.6)

for some constant c, i.e., ln C(T ) = O(1/T ) as T → 0; that this is the
best possible in that setting was already known from [5]. We refer to [14,
8] and their references for some previous work on blowup rates for infinite
dimensional problems. We do note that several papers (e.g., [7, 4], etc.)
have obtained (1.6) for a variety of problems so, with this in mind, we take
the blowup rate of (1.6) as ‘standard’ and define the nullcontrollability rate

1We will consistently take UT = L2([0, T ] → U), while noting that, as in [15], other
norms could be handled similarly.
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constant2

c∗ = c∗(A,B) := lim sup
T→0

T ln C(T ;A,B) (1.7)

Our objective, then, is to show for various (A,B) in infinite dimensional
settings that we have c∗(A,B) <∞ — better, to estimate c∗(A,B).

For coupled systems with control restricted to one component, blowup
estimates of the form (1.6) have not been available in the case of local control.
We do note that blowup estimates have recently been obtained [11, 3] for
nullcontrollability with local control (equivalently, for local observation) in a
single component in the context of the thermoelastic system

wtt + ∆2w − α∆ϑ = 0, ϑt −∆ϑ + α∆wt = 0 (1.8)

which was also treated3 in [8]. These papers, each following the approach of
the sequence [6, 9, 2], showed for this system that{

For any β > 1 there is cβ such that (for small T > 0):
C(T ;A,B) ≤ exp

[
cβT−β

] (1.10)

This exp
[
O(1/T β)

]
estimate is, of course, only mildly weaker than the ex-

pected asymptotics (1.6), which corresponds to the limit case β = 1, but
does not show that c∗(A,B) <∞.

2If (1.1) is not rapidly nullcontrollable (i.e., if there is a minimum nullcontrol time so
C(T ) would not be defined for small T > 0), then we take c∗ =∞; also — although no such
cases are known — (1.7) might conceivably give c∗ =∞ even for a rapidly nullcontrollable
example. On the other hand, if ln C(T ;A,B) = o(1/T ) — as, e.g., in the finite dimensional
case: c.f., [13, 15] where C(T ;A,B) = O((1/T )β) — we say that c∗ = 0+.

3Actually, [8] treated the more general system

wtt − γ[∆w]tt + ∆2w − α∆ϑ = 0, ϑt −∆ϑ + α∆wt = 0 (1.9)

for γ ≥ 0 — i.e., a Kirchhoff plate model when γ > 0 rather than the Euler-Bernoulli model
of (1.8) for γ = 0. While it was possible to handle global control/observation (ω = Ω)
for (1.9), we note that (1.9) with γ > 0 is not rapidly nullcontrollable using local control
restricted to ω $ Ω. [It should be noted that [14, 8] do not treat local control — taking
(1.1) to be a partial differential equation with X a space of functions on a region Ω with the
range of B restricted to support in some small patch ω ⊂ Ω; to show nullcontrollability
at all with control restricted to general (small, open) ω seems to demand some use of
Carleman estimates.] Since, in contrast to [8], we are now concerned with this localization
of control as well as with rapid nullcontrollability, we restrict our attention here to the
Euler-Bernoulli model (1.8) with ‘hinged’ boundary conditions.

3



Stimulated by these two papers, our objective here is to show that a mod-
ification of the [6, 9, 2] approach can, indeed, give a finite nullcontrollability
rate c∗ for this thermoelastic problem (1.8) with control restricted to a single
component and with support in a patch ω and can even estimate c∗(A,B)
in this case. Rather than organizing the exposition to follow the shortest
route to that result, we take the opportunity to present related results which
appear to be of some independent interest.

2 Principal results

This section might be considered a single theorem, but it is split for presen-
tation here in two parts. The first part, the heart of our analysis, compares
the nullcontrollability results for a pair of systems like (1.1) with the same
system operator A but with different control operators B1 and B2 as a more
sophisticated version of the obvious comparison

C(T ;A,BK)) ≤ ‖K−1‖C(T ;A,B) (2.1)

available when K is boundedly invertible. The second part, somewhat more
technically oriented, considers an apparently weaker property of (1.1) —
seeking only to approximate the nullcontrollability: for some d > 0 and
every x0 ∈ X (and small T > 0), there exists u(·) ∈ UT such that

|x(T ;x0, u)| ≤ e−d/T |x0| (2.2)

with not too great control cost, i.e., there is some c > 0 giving (c, d) ∈ Γ
where

Γ = Γ(A,B) :=

{
(c, d) :

For small T > 0 and all x0 ∈ X
one has (2.2) with ‖u‖ ≤ ec/T |x0|.

}
(2.3)

— and then shows that c∗(A,B) <∞ if Γ(A,B) is nonempty.
We now turn to the relation between two systems (1.1)1 and (1.1)2 — with

the same A, but different control operators B1 and B2 so we are comparing

ẋ = Ax + Bj u x(0) = x0 (j = 1, 2)

Our goal will be to use a comparison problem (1.1)1, for which we presum-
ably already have information, to obtain information about the ‘real prob-
lem’ (1.1)2 and the key assumption here will be a controlled form of (2.1)
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when restricted to certain subspaces: we will postulate the existence of a
family of subspaces Xσ ⊂ X ∗ such that

[H]


i] each Xσ is invariant under S∗(·) and

ii] v ⊥ Xσ =⇒ |S(t)v| ≤ C e−ασt |v|
iii] w ∈ Xσ =⇒ |B∗1w| ≤ C eγ

√
σ |B∗2 w|

for some constants C, α, γ > 0 and large σ > 0.

(2.4)

Theorem 2.1. Suppose we already know that c∗ = c∗(A,B1) < ∞ and the
control operators B1,B2 are related by the existence of a family of subspaces
Xσ ⊂ X ∗ satisfying [H]. Then Γ(A,B2) is also nonempty: more specifically,
one has (c, d) ∈ Γ(A,B2) whenever

c > c(s), 0 < d < d(s) for some s > s (2.5)

with c(s) = 2c∗ + γs, d(s) = 2αs2 − c(s), s := (γ/4α)
[
1 +

√
1 + 8αc∗/γ2

]
.

Proof: Given c > c∗(A,B1), Theorem 1.1 gives the observation inequal-
ity:

|S∗(τ)η|2 ≤ e2c/τ

∫ τ

0

|B∗1 S∗(t) η|2 dt (2.6)

for the adjoint system. The invariance [H-i] gives w = S∗(t)η ∈ Xσ for any
η ∈ Xσ, so [H-iii] then gives the observation inequality:

|S∗(τ) η|2 ≤ e2c/τC2 e2γ
√

σ

∫ τ

0

|B∗2 S∗(t) η|2 dt (2.7)

for the new adjoint system. We have (2.7) for all η ∈ Xσ and, using Theo-
rem 1.1 in reverse, this observation inequality in turn gives

For x0 ∈ X there exists u(·) ∈ Uτ with

‖u(·)‖ ≤ eµ |x0| x̂(τ ;x0, u) ⊥ Xσ

where µ = µ(σ, τ) = c/τ + ln C + γ
√

σ

(2.8)

[Here x̂(·) is the solution of (1.1)2 and so is given by the analogue (1.2)2 of
(1.2) (i.e., replacement B ←7 B2) — which then gives

|x̂(τ ;x0, u)| ≤ K1|x0|+ K2 eµ |x0| ≤ K eµ |x0| (2.9)
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where K1 bounds S(·) on [0, τ ] and K2 similarly4 bounds S(·)B2, giving
K = K1 + K2.] Setting τ = T/2 for a given small T > 0 and extending the
control u(·) of (2.8) to UT as 0 on (τ, 2τ ] = (T/2, T ], we may use (2.8) and
[H-ii] to get

‖u‖ ≤ exp[µ(σ, T/2)] |x0|,
|x̂(T ;x0, u)| ≤ e−ασT/2|x̂(τ ;x0, u)| ≤ exp[−λ(σ, T )] |x0|

with λ(σ, T ) = α σ T/2− µ(σ, T/2)− ln K

(2.10)

For any s > 0, setting
√

σ = s/T then gives

µ(σ, T/2) = (2c∗ + γs)/T + o(1/T ) = c(s)/T + o(1/T ),
λ(σ, T ) = (2αs2 − c(s)) /T + o(1/T ) = d(s)/T + o(1/T ).

(2.11)

The requirement s > s just ensures that d(s) > 0 and then (2.5) gives
µ(σ, T/2) < c/T and λ(σ, T ) > d/T for small enough T , so (2.10) shows that
(c, d) ∈ Γ(A,B2).

Remark 2.2. The single relevant parameter in [H] is γ/
√

α since we may
reparametrize the subspaces by σ ←7 ασ; it is a minor exercise to see that
this gives the same (c, d) ∈ Γ(A,B2) in (2.5). Somewhat more interesting is
the observation that the key hypothesis [H-iii] is only used to obtain (2.7)
from (2.6), i.e., to have∫ τ

0

|B∗1 S∗(t) η|2 dt ≤ C2 e2γ
√

σ

∫ τ

0

|B∗2 S∗(t) η|2 dt

We note that, if we replaced [H-iii] by the weaker condition∫ τ

0

|B∗1 S∗(t) η|2 dt ≤ C2 e2γ
√

σ e2c̃/τ

∫ τ

0

|B∗2 S∗(t) η|2 dt, (2.12)

this would only have the effect of replacing c by (c + c̃) in (2.8): one would
still have c∗(A,B2) <∞ in the Corollary — and, indeed, this last would still
be unaffected by a further weakening of (2.12) in replacing the upper limit τ
of the integral on the left by, e.g., τ/2.

4Strictly speaking, we only need K2 to bound the related integral maps from U-valued
to X -valued functions.
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We now consider the significance of the set Γ(A,B). In general, we cannot
expect, for an arbitrary equation of the form (1.1), that there would be
any possibility of (2.2) for any d and any control cost when T is small —
certainly this is the case for the wave equation, where one has a finite speed of
propagation, if control is spatially limited. [On the other hand, if the system
is rapidly nullcontrollable (i.e., nullcontrollable for arbitrarily small T > 0),
then (2.2) is possible for every d by using a nullcontrol; if c∗(A,B) < c <∞,
we say that (c,∞) ∈ Γ(A,B).] It is immediate from its definition that
(c, d) ∈ Γ implies (c′, d′) ∈ Γ whenever c′ ≥ c, 0 < d′ ≤ d so the interior of Γ
is {(c, d) : c > c−(d)} for some nondecreasing function5 c−(·) on (0, d+) ⊂ R+.

Theorem 2.3. If Γ(A,B) 6= ∅, then (1.1) is rapidly nullcontrollable and

c∗(A,B) ≤ (c + d)c/d (2.13)

for any (c, d) ∈ Γ(A,B).

Proof: We partition [0, T ) =
⋃

k Ik with Ik = [tk−1, tk], setting

tk − tk−1 = τk := (1− ϑ) ϑk−1 T so τk+1 = ϑτk and

∞∑
1

τk = T, SK :=
K∑
1

1

τk

=
1

(1− ϑ) T

K∑
1

ϑ−(k−1) =
(ϑ−K − 1)

(1− ϑ)2 T

with t0 = 0 and with ϑ ∈ (0, 1) to be determined — except that, once we are
given (c, d) ∈ Γ(A,B), we will require

ϑ >
c

c + d
whence ε := 1− c

d

(
1

ϑ
− 1

)
> 0. (2.14)

For such (c, d), given x0 ∈ X , the definition of Γ ensures existence of some
u1 on I1 = [0, τ1] such that ‖u1‖ ≤ ec/τ1|x0| and |x1| ≤ e−d/τ1 |x0| where
x1 = x(τ1;x0, u1). Similarly, proceeding recursively to construct controls uk

on Ik (noting the autonomy of the system to use the definition of Γ again),
we then have

x(tk;x0, u) = x(τk;xk−1, uk) =: xk with

{
|xk| ≤ e−d/τk |xk−1|
‖uk‖ ≤ ec/τk |xk−1|

(2.15)

5From Theorem 2.3 below, we see that d+ =∞, so c−(·) is actually defined and bounded
on all of R+, whenever Γ is nonempty. At this point it is not clear when (c−(d), d) ∈ Γ or
whether c−(·) must be a concave function.

7



where the control u ∈ UT is defined as uk on each Ik so6 ‖u‖ ≤
∑

k ‖uk‖. By
induction, we easily get from (2.15) that

|xk| ≤ exp [−dSk] |x0|

‖uk‖ ≤ e−νk |x0| with νk := [dSk−1 − c/τk]
(2.16)

Note that, recalling (2.14),

νk+1 − νk = d

[
(Sk − Sk−1)−

c

d

(
1

τk+1

− 1

τk

)]
= εd/τk ≥ εd/τ1

By induction, νk ≥ (k− 1)εd/τ1 + ν1 and, setting c = c/(1−ϑ), we note that
−ν1 = c/τ1 = c/T . Thus we have

‖uk‖ ≤ e−(k−1)εd/τ1 ec/T |x0|

‖u‖ ≤
∞∑
1

‖uk‖ = Cec/T |x0| with C =
∞∑
0

e−kεd/τ1
(2.17)

[We are not concerned with this constant C, for which ln C = o(1/T ) in any
case.] Note that (1.2) gives, for any k,

|x(T )| ≤ |S(T − tk)xk|+
∣∣∣∣∫ T

tk

|S(T − t) u(t)| dt

∣∣∣∣ ≤ K1|xk|+ K2

∥∥∥∥u
∣∣∣
(tk,T )

∥∥∥∥
going to 0 as k → ∞, tk → T — which verifies that this u is, indeed, a
nullcontrol. Finally, subject to (2.14), which requires (1−ϑ) > d/(c+ d), we
minimize c = c/(1− ϑ) in the estimate (2.17) to obtain (2.13).

We combine these theorems to obtain:

Theorem 2.4. Under the hypotheses of Theorem 2.1, (1.1)2 will blow up at
the ‘standard’ rate exp[O(1/T )] as T → 0, i.e., ĉ∗ = c∗(A,B2) will be finite.
In particular,

c∗(A,B1) = 0+ =⇒ c∗(A,B2) ≤ 2γ2/α (2.18)

6Actually, we have ‖u‖2 =
∑

k ‖uk‖2 since the {uk} are supported on disjoint intervals
and so are orthogonal.
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Proof: From Theorem 2.3 we will have c∗(A,B2) ≤ (c + d)c/d for all
(c, d) ∈ Γ(A,B2) as in (2.5) so

ĉ∗ = c∗(A,B2) ≤ inf
s>s

{
[c(s) + d(s)] c(s)

d(s)

}
<∞

When c∗ = 0+ we have, simply, c = γs, d = 2αs2 − γs and can optimize by
taking s = γ/α to get (2.18).

3 Applications: the thermoelastic system

The essential tools which now make it possible for us to obtain the expected
exp[O(1/T )] blowup rate for a variety of systems involving the Dirichlet
Laplacian are Theorem 2.4 and a deep result due to Jerison and Lebeau:

Theorem 3.1. For a bounded connected region Ω, let {(zj, λj)} be the eigen-
pairs of L = −∆ on Ω with Dirichlet boundary conditions so 0 < λ0 ≤ λj →
∞. Then for any nonempty open ω ⊂ Ω there is a constant γ > 0 such that,
for all σ > 0 and for every function w ∈ Zσ = span{zj : λj ≤ σ}, one has∫

Ω

|w(s)|2 ds ≤ C2e2γ
√

σ

∫
ω

|w(s)|2 ds (3.1)

Proof: This is immediate from Theorem 14.6 of [6].

Throughout this section we will let Ω, ω, L, {zj}, Zσ be as above.
As a first application, we consider the heat equation.

xt = ∆x + u on QT = (0, T ]× Ω

x(0) = x0 x
∣∣∣
∂Ω

= 0
(3.2)

with the control u required to have support in the patch ω. Although the
result we obtain here is already known (cf., e.g., [4]), it shows how the present
approach applies.

Theorem 3.2. The heat equation (3.2) with control restricted to a patch ω
is rapidly nullcontrollable with exp[O(1/T )] blowup rate as T → 0.
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Proof: We take U = X = L2(Ω) andA = ∆ = −L. For B1 = I, without
the control restriction to ω, it is quite easy to obtain exact nullcontrollability
with C(T ;A,B1) ∼ 1/

√
T so c∗(α,B1) = 0+. This, then, provides a suitable

comparison for the ‘real’ problem with patch control, corresponding to the
use of B2 = Πω = B1Π — enabling the use of Theorems 2.4, 3.1.

Taking Xσ = Zσ as in Theorem 3.1, we immediately have [H-i] and The-
orem 3.1 just gives the key comparison estimate [H-iii]. On the other hand,
since {zj} is orthonormal, the orthocomplement X⊥

σ is just span{zj : λj > σ}
so for x ⊥ Xσ one has [H-ii] with α = 1. We then apply Theorem 2.4 to
obtain the desired result with c∗(A,B2) as in (2.18), taking γ from the ap-
plication of Theorem 3.1.

Finally, we consider local control in a single component for the thermoe-
lastic system

wtt + ∆2w − α∆ϑ = 0, ϑt −∆ϑ + α∆wt = 0,
ϑ = w = ∆w = 0 on ∂Ω

(3.3)

It is significant for our analysis that we must consider this with the same
boundary conditions for w, ∆w, ϑ so, absorbing these in the domain specifi-
cation, ∆ is the same operator at each of its occurrences in (3.4). For def-
initeness we have imposed hinged boundary condition for the first equation
and Dirichlet conditions for ϑ so, throughout, ∆ is the Dirichlet Laplacian
on the region Ω to which Theorem 3.1 applies.

Theorem 3.3. The controlled thermoelastic system (3.3) using local control,
restricted to an arbitrary patch ω ∈ Ω and a single component, is rapidly
nullcontrollable with exp[O(1/T )] blowup rate as T → 0.

The proof will be almost identical to the proof above of Theorem 3.2; the only
new idea is the observation that the problem factors so one can deduce the
relevant spectral decomposition here from the decomposition for the scalar
operator L.

Proof: Setting y = −∆w and z = wt, we can write (3.3) — with control
— as a first order system on the state space X = L2(Ω→ R3) = R3⊗L2(Ω)
with A = M ⊗ L:

ẋ = [M ⊗ L]x + B u x =

 ϑ
y
z

 , M =

 −1 0 α
0 0 1
−α −1 0

 . (3.4)
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For control in a single component, we take [B1 u](s) = u(s)b (s ∈ Ω) for
u(·) ∈ U = L2(Ω) with three possibilities for b ∈ R3: taking b = e1 or
= e2 or = e3 to select the desired component: thermal, displacement, or
velocity. For consideration of local control, we then take B2 = bΠ where
Π = Πω is restriction to the patch ω ⊂ Ω (i.e., multiplication of u(·) by the
characteristic function χω).

With this B1, (1.1)1 is just the thermoelastic system with global control
(ω = Ω) in a single component, for which it is already known — cf., e.g., [1, 8]
and references there — that C(T ;A,B1) ∼ T−5/2 so c∗(A,B1) = 0+. We now
take Xσ = R3⊗Zσ so Xσ consists of all x ∈ X of the form x(s) =

∑
j zj(s)yj

with vectors yj ∈ R3 and with j such that λj ≤ σ. For any such x we may
set w(s) = b · x =

∑
j(b · yj)zj ∈ Zσ and will have |B1x|2 = |w|2 and also

|B2x|2 = |Πw|2 so Theorem 3.1 gives the key comparison estimate [H-iii].
On the other hand, since {zj} is orthonormal, the orthocomplement X⊥

σ is
just R3 ⊗Z⊥σ with Z⊥σ = span{zj : λj > σ}. Thus, for x ⊥ Xσ one has

x =
∑

{λj>σ}

yjzj S(t)x =
∑

{λj>σ}

etMyje
−λjtzj

which gives [H-i, ii] with α = 1. We then apply Theorem 2.4 to obtain the
desired result with c∗(α,B2) as in (2.18), taking γ from the application of
Theorem 3.1.

Remark 3.4. We have, as promised, shown the desired blowup rate (1.6)
for the thermoelastic problem with local control in a single component with
an estimate based on Theorem 3.1 for the constant c∗ of (1.7), thus improv-
ing the results (1.10) of [11, 3]. The method of analysis clearly is applicable
to other coupled systems as well. However, it is worth noting here what
is not covered by this analysis. First, we note situations with the Dirichlet
Laplacian replaced by some other operator, e.g., with variable coefficients
or different boundary conditions: all that would be needed to extend the
present analysis to such settings would be a corresponding extension of the
Jerison-Lebeau estimate of Theorem 3.1. Second, we have only considered
here interior patches; the standard trick7 for boundary patch control then
works for scalar equations, but is unavailable for systems.

7. . . artificially perturbing Ω by a bulge at the boundary patch containing a small
‘interior’ control patch and then using the trace.
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The core of this approach has been the use of Theorem 3.1 to obtain
[H]. It was noted in Remark 2.2 that the key estimate [H-iii] can be sub-
stantially weakened without losing the conclusion of Theorem 2.1 and, noting
that the nature of [H] ensures a close connection with a spectral expansion
for the spatial operator, it seems conceivable that, as with the ‘observability
resolvent estimates’ of [10], it might be possible to deduce some useful form
of [H-iii] from nullcontrollability, using B2, of the corresponding scalar wave
equation.

The major area left completely untouched by this analysis involves
systems not quite as separable as here — e.g., (cf., e.g., [1]) the thermoe-
lastic system with different boundary conditions for ϑ or other than hinged
boundary conditions for the elastic subproblem.
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