HOW VIOLENT ARE FAST CONTROLS? ${ }^{1}$

Thomas I. Seidman ${ }^{2}$

Abstract

: For any controllable linear system it is clear that the minimum control energy must increase unboundedly as the available time for exact control decreases to 0 . This is made precise, obtaining asymptotically $\mathcal{O}\left(T^{-(K+1 / 2}\right)$ behavior for the norm of the control operator where K is the order of the 'least controllable' modes (the minimal exponent for the rank condition).

KEY WORDS: linear system, LQ optimal control, asymptotic behavior.

[^0]
1 Introduction

Consider a linear control system

$$
\begin{equation*}
\dot{x}=\mathbf{A} x+\mathbf{B} u \quad, \quad x(0)=0 \tag{1.1}
\end{equation*}
$$

with A, B constant matrices $\left(n \times n\right.$ and $n \times m$, respectively, so $x(\cdot)$ is \mathbb{R}^{n} valued and the control $u(\cdot)$ is \mathbb{R}^{m}-valued). Assuming this is controllable, we know that for each terminal time $T>0$ and each target $\xi \in \mathbb{R}^{n}$ there exist controls $u(\cdot)$ giving $x(T)=\xi$ and, indeed, that there is unique such control

$$
\begin{equation*}
u_{\text {opt }}=u_{\text {opt }}(\cdot ; T, \xi) \in L^{2}\left([0, T] \rightarrow \mathbb{R}^{m}\right)=: \mathcal{U}=\mathcal{U}_{T} \tag{1.2}
\end{equation*}
$$

minimizing $\|u\|$. The norm to be minimized is, of course, taken to be that of $\mathcal{U}=L^{2}\left([0, T] \rightarrow \mathbb{R}^{m}\right)$ so $\left\|u_{\text {opt }}\right\|^{2}$ gives the least control energy needed to reach the target ξ at time T.

It is to be expected that more violent control would be needed as the time T available becomes shorter ${ }^{3}$. Our object in this paper is to give a precise (asymptotic) answer to the question of the title. Since the optimal control $u_{\text {opt }}$ is given by a linear operator

$$
\begin{equation*}
\mathbf{C}_{T}: \xi \mapsto u_{\text {opt }}(\cdot ; T, \xi): \mathbb{R}^{n} \longrightarrow \mathcal{U}=\mathcal{U}_{T} \tag{1.3}
\end{equation*}
$$

the principal result can be stated as

$$
\begin{equation*}
\left\|\mathbf{C}_{T}\right\| \sim \gamma T^{-(K+1 / 2)} \quad \text { as } T \rightarrow 0 \tag{1.4}
\end{equation*}
$$

where K is the minimal exponent giving the well known rank condition for controllability:

$$
\begin{equation*}
\operatorname{rank}\left[\mathbf{B}, \mathbf{A B}, \ldots, \mathbf{A}^{K} \mathbf{B}\right]=n \tag{1.5}
\end{equation*}
$$

and $\gamma \neq 0$ is also computable from \mathbf{A}, \mathbf{B}.
It is worth noting that this also estimates sensitivity for observation of the adjoint problem. If one can observe $y:=\mathbf{B}^{*} z$ for a solution z of the equation $\dot{z}=-\mathbf{A}^{*} z$, then one easily sees that one recovers the state through $z(T)=\mathbf{C}_{T}^{*} y(\cdot)$. This means that the uncertainty in the recovered state due to noise or measurement error $e(\cdot)$ in the observation can be estimated by

[^1]$\left\|\mathbf{C}_{T}^{*} e(\cdot)\right\| \leq\left\|\mathbf{C}_{T}\right\|\|e(\cdot)\|$. The same result (1.4) shows how sensitivity to error increases as the observation time shrinks: since, plausibly, we might anticipate
$$
\operatorname{Exp}\left[\int_{0}^{T}|e|^{2} d t\right] \sim \sigma^{2} T, \text { i.e., } \operatorname{Exp}[\|e(\cdot)\|] \sim \sigma T^{1 / 2}
$$
the sensitivity estimate becomes
\[

$$
\begin{equation*}
\text { expected } \| \text { uncertainty in } z(T) \| \sim \gamma \sigma T^{-K} \text { as } T \rightarrow 0 \tag{1.6}
\end{equation*}
$$

\]

The formula (2.3) is classical but it is interesting to observe historically that the question of the title seems to have been considered first for distributed parameter systems ${ }^{4}$ although it was posed for the present finite dimensional case at least as far back as 1975 [3].

2 Formulation

Treatment of (1.1) is expressible in terms of the matrix exponential, given by the convergent series

$$
\begin{equation*}
e^{s \mathbf{A}}:=\sum_{0}^{\infty}\left(s^{k} / k!\right) \mathbf{A}^{k} . \tag{2.1}
\end{equation*}
$$

The solution x of (1) is then given by

$$
x(t)=\int_{0}^{t} e^{(t-s) \mathbf{A}} \mathbf{B} u(s) d s
$$

so, in particular, one has $x(T)=\mathbf{V} u(\cdot)$ where

$$
\begin{equation*}
\mathbf{V}=\mathbf{V}_{T}: \mathcal{U} \rightarrow \mathbb{R}^{n}: u(\cdot) \mapsto \int_{0}^{T} e^{(T-s) \mathbf{A}} \mathbf{B} u(s) d s \tag{2.2}
\end{equation*}
$$

A standard argument shows that $\|u(\cdot)\|_{\mathcal{U}}$ is minimized, subject to the condition $\mathbf{V} u=\xi$, by taking $u \in \mathcal{R}\left(\mathbf{V}^{*}\right)$ whence

$$
u_{\text {opt }}(\cdot ; T, \xi)=\mathbf{V}^{*} \omega \text { with, necessarily, } \mathbf{V V}^{*} \omega=\xi
$$

[^2]so one has $\mathbf{C}_{T}: \xi \mapsto u_{\text {opt }}$ given by
\[

$$
\begin{equation*}
\mathbf{C}_{T}=\mathbf{V}_{T}^{*}\left(\mathbf{V}_{T} \mathbf{V}_{T}^{*}\right)^{-1} \tag{2.3}
\end{equation*}
$$

\]

where controllability gives, as we see, invertibility of $\mathbf{V}_{T} \mathbf{V}_{T}^{*}=: \mathbf{W}_{T}=\mathbf{W}$. We easily see that $\mathbf{V}^{*}: \mathbb{R}^{n} \rightarrow \mathcal{U}$ is given by

$$
\begin{equation*}
\left[\mathbf{V}^{*} \omega\right](t)=\left[e^{(T-t) \mathbf{A}} \mathbf{B}\right]^{*} \omega \quad \text { for } t \in[0, T] \tag{2.4}
\end{equation*}
$$

so the $n \times n$ matrix $\mathbf{W}:=\mathbf{V} \mathbf{V}^{*}$ is given by

$$
\begin{equation*}
\mathbf{W}=\mathbf{W}_{T}=\int_{0}^{T} e^{s \mathbf{A}} \mathbf{B}\left[e^{s \mathbf{A}} \mathbf{B}\right]^{*} d s \tag{2.5}
\end{equation*}
$$

Clearly, \mathbf{W} is self-adjoint and (at least) semidefinite from its form. We have the identity

$$
\begin{align*}
\left\|u_{o p t}\right\|^{2} & =\left\|\mathbf{C}_{T} \xi\right\|^{2}=\left\langle\mathbf{V}^{*} \mathbf{W}^{-1} \xi, \mathbf{V}^{*} \mathbf{W}^{-1} \xi\right\rangle \tag{2.6}\\
& =\left(\mathbf{W}^{-1} \xi\right) \cdot\left(\mathbf{V} \mathbf{V}^{*} \mathbf{W}^{-1} \xi\right)=\left(\mathbf{W}_{T}^{-1} \xi\right) \cdot \xi
\end{align*}
$$

which makes it clear that our object must be to compute \mathbf{W}_{T}^{-1} asymptotically.
The key to our approach is the invertibility of

$$
\begin{equation*}
\mathbf{Q}:=\lim _{T \rightarrow 0} T^{-(2 K+1)} \boldsymbol{\Gamma}_{T} \mathbf{W}_{T} \boldsymbol{\Gamma}_{T} \tag{2.7}
\end{equation*}
$$

using a suitable family of operators $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}_{T}$ such that

$$
\begin{equation*}
\boldsymbol{\Gamma}_{T} \text { invertible for } T \neq 0, \quad \boldsymbol{\Gamma}_{T}=\boldsymbol{\Gamma}_{0}+\mathcal{O}(T) \tag{2.8}
\end{equation*}
$$

see (2.12), below.
Given the matrices \mathbf{A}, \mathbf{B} we consider the nested sequence $\left(\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots\right)$ of subspaces of \mathbb{R}^{n} given recursively by

$$
\begin{align*}
& \mathcal{S}_{k}=\mathcal{S}_{k-1}+\mathcal{R}\left(\mathbf{A}^{k} \mathbf{B}\right) \quad \text { with } \quad \mathcal{S}_{-1}:=\{0\}, \tag{2.9}\\
& \mathcal{S}_{0}=\mathcal{R}(\mathbf{B}), \quad \mathcal{S}_{1}=\mathcal{R}(\mathbf{B})+\mathcal{R}(\mathbf{A} \mathbf{B}), \ldots
\end{align*}
$$

so each \mathcal{S}_{k} is the column space (range) of the composite matrix $\left[\mathbf{B}, \mathbf{A B}, \ldots, \mathbf{A}^{k} \mathbf{B}\right]$. The assumption of controllability means that $\mathcal{S}_{K}=\mathbb{R}^{n}$ for large enough K (i.e., (1.5)) and we fix K as the minimal exponent/index giving this.

For each $k \quad(0 \leq k \leq K)$ we can find the orthogonal complement of \mathcal{S}_{k-1} in \mathcal{S}_{k} and let \mathbf{E}_{k} be the orthogonal projection on this subspace. This gives the important fact that

$$
\begin{equation*}
\mathbf{E}_{k} \mathbf{A}^{j} \mathbf{B}=\mathbf{0} \text { for } j<k \leq K \tag{2.10}
\end{equation*}
$$

since $j<k$ gives $\mathcal{R}\left(\mathbf{A}^{j} \mathbf{B}\right) \subset \mathcal{S}_{k-1} \subset \mathcal{N}\left(\mathbf{E}_{k}\right)$. We observe, although we do not need the fact, that

$$
m \geq \operatorname{dim} \mathcal{R}(\mathbf{B})=\operatorname{dim} \mathcal{R}\left(\mathbf{E}_{0}\right) \geq \operatorname{dim} \mathcal{R}\left(\mathbf{E}_{1}\right) \geq \ldots \geq \operatorname{dim} \mathcal{R}\left(\mathbf{E}_{K}\right)
$$

we will need the fact that $\mathcal{S}_{K-1} \neq \mathcal{S}_{K}=\mathbb{R}^{n}$ by the definition of K so $\operatorname{dim} \mathcal{R}\left(\mathbf{E}_{K}\right) \neq 0$ and $\mathbf{E}_{K} \neq \mathbf{0}$. The construction of $\left\{\mathbf{E}_{k}\right\}$ gives a direct sum decomposition

$$
\begin{align*}
\mathbf{1} & =\mathbf{E}_{0}+\ldots+\mathbf{E}_{K}, \quad \quad \mathbb{R}^{n}=\oplus_{0}^{K} \mathcal{R}\left(\mathbf{E}_{k}\right), \\
\mathcal{S}_{k} & =\mathcal{R}\left(\mathbf{E}_{0}\right) \oplus \ldots \oplus \mathcal{R}\left(\mathbf{E}_{k}\right) \text { for } k=0, \ldots, K . \tag{2.11}
\end{align*}
$$

Thus, introducing

$$
\begin{equation*}
\boldsymbol{\Gamma}=\boldsymbol{\Gamma}_{T}:=\sum_{0}^{K} k!T^{K-k} \mathbf{E}_{k} \tag{2.12}
\end{equation*}
$$

we see that (2.8) holds with $\boldsymbol{\Gamma}_{0}=K!\mathbf{E}_{K} \neq \mathbf{0}$.

3 Principal Computation

Our object in this section is to obtain (2.7), with $\boldsymbol{\Gamma}_{T}$ as in (2.12), computing Q and showing it is invertible.

The integral expression (2.5) gives, on substituting $s=T \sigma$,

$$
T^{-(2 K+1)} \boldsymbol{\Gamma} \mathbf{W} \boldsymbol{\Gamma}=\int_{0}^{1}\left[T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B}\right]\left[T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B}\right]^{*} d \sigma .
$$

Using (2.12) and (2.1), we have (for $T>0$)

$$
\begin{aligned}
T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B} & =\sum_{k=0}^{K} k!T^{-k} \mathbf{E}_{k} \quad \sum_{j=0}^{\infty} \frac{\sigma^{j}}{j!} T^{j} \mathbf{A}^{j} \mathbf{B} \\
& =\sum_{k=0}^{K} \sum_{j=0}^{\infty} \frac{k!\sigma^{j}}{j!} T^{j-k} \mathbf{E}_{k} \mathbf{A}^{j} \mathbf{B}
\end{aligned}
$$

By (2.10), the terms with $j<k$ vanish so no negative powers of T actually appear on the right; we then split the sum into the terms with $j=k$ and those with $j \geq k+1$ for which we set $i=j-(k+1)=0,1, \ldots$. Thus,

$$
\begin{align*}
T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B}= & \sum_{k=0}^{K} \sigma^{k} \mathbf{E}_{k} \mathbf{A}^{k} \mathbf{B} \\
& +T\left[\sum_{k=0}^{K} \sum_{i=0}^{\infty} \frac{k!\sigma^{i+k+1} T^{i}}{(i+k+1)!} \mathbf{E}_{k} \mathbf{A}^{j} \mathbf{B}\right] \tag{3.1}\\
= & \mathbf{P}(\sigma)+T \mathbf{R}_{1}(T, \sigma)
\end{align*}
$$

Restricting our attention to $T \leq 1$, which is certainly permissible as we are only interested in the limit $T \rightarrow 0$, an easy estimation gives the uniform bound

$$
\begin{aligned}
\left\|\mathbf{R}_{1}(T, \sigma)\right\| & \leq \sum_{k=0}^{K} \sum_{i=0}^{\infty}\|\mathbf{A}\|^{i+k+1}\|\mathbf{B}\| /(i+1)! \\
& =\left(1+\ldots+\|\mathbf{A}\|^{K}\right)\|\mathbf{B}\|\left(e^{\|\mathbf{A}\|}-1\right)
\end{aligned}
$$

since $(i+k+1)!\geq(i+1)!k!$. Hence, (3.1) gives ${ }^{5}$

$$
T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B}=\mathbf{P}(\sigma)+\mathcal{O}(T)
$$

and

$$
\begin{align*}
& \left(T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B}\right)\left(T^{-K} \boldsymbol{\Gamma} e^{T \sigma \mathbf{A}} \mathbf{B}\right)^{*} \tag{3.2}\\
= & {\left[\mathbf{P}(\sigma)+T \mathbf{R}_{1}(T, \sigma)\right]\left[\mathbf{P}(\sigma)+T \mathbf{R}_{1}(T, \sigma)\right]^{*} } \\
= & \mathbf{P}(\sigma) \mathbf{P}^{*}(\sigma)+T \mathbf{R}_{2}(T, \sigma),
\end{align*}
$$

with $\mathbf{R}_{2}(T, \sigma):=\left(\mathbf{R}_{1} \mathbf{P}^{*}+\mathbf{P} \mathbf{R}_{1}^{*}+T \mathbf{R}_{1} \mathbf{R}_{1}^{*}\right)$ uniformly bounded. Thus, integrating,

$$
\begin{equation*}
T^{-(2 K+1)} \mathbf{\Gamma} \mathbf{W} \boldsymbol{\Gamma}=\mathbf{Q}+\mathcal{O}(T) \tag{3.3}
\end{equation*}
$$

with $\mathcal{O}(T)=T \int \mathbf{R}_{2} d \sigma=: T \mathbf{R}_{3}(T)$ and

$$
\begin{align*}
\mathbf{Q} & :=\int_{0}^{1} \mathbf{P}(\sigma) \mathbf{P}^{*}(\sigma) d \sigma \tag{3.4}\\
& =\sum_{j, k=0}^{K}(j+k+1)^{-1} \mathbf{E}_{j} \mathbf{A}^{j} \mathbf{B B}^{*} \mathbf{A}^{* k} \mathbf{E}_{k} .
\end{align*}
$$

[^3]We must show that \mathbf{Q} is invertible.
Lemma: $\mathbf{B}^{*} \mathbf{A}^{* k} \mathbf{E}_{k} \xi=0 \Longrightarrow \mathbf{E}_{k} \xi=0$.
Proof : For any $\xi \in \mathbb{R}^{n}$ we have $\mathbf{E}_{k} \xi \in \mathcal{S}_{k}:=\mathcal{S}_{k-1}+\mathcal{R}\left(\mathbf{A}^{k} \mathbf{B}\right)$ by definition so we may write

$$
\mathbf{E}_{k} \xi=\mathbf{A}^{k} \mathbf{B} \eta+\xi^{\prime} \quad\left(\xi^{\prime} \in \mathcal{S}_{k-1}\right)
$$

for some $\eta \in \mathbb{R}^{m}$. Then, assuming $\mathbf{B}^{*} \mathbf{A}^{* k} \mathbf{E}_{k} \xi=0$, we would have

$$
\begin{aligned}
\left\|\mathbf{E}_{k} \xi\right\|^{2} & =\left(\mathbf{A}^{k} \mathbf{B} \eta+\xi^{\prime}\right) \cdot\left(\mathbf{E}_{k} \xi\right) \\
& =\eta \cdot\left(\mathbf{B}^{*} \mathbf{A}^{* k} \mathbf{E}_{k} \xi\right)+\left(\mathbf{E}_{k} \xi^{\prime}\right) \cdot \xi=0
\end{aligned}
$$

since $\mathbf{E}_{k} \xi^{\prime}=0$ for $\xi^{\prime} \in \mathcal{S}_{k-1}$.
From (3.4) we see that

$$
\xi \cdot \mathbf{Q} \xi=\int_{0}^{1} \xi \cdot\left[\mathbf{P}(\sigma) \mathbf{P}^{*}(\sigma) \xi\right] d \tau=\int_{0}^{1}\left\|\mathbf{P}^{*}(\sigma) \xi\right\|^{2} d \tau
$$

so $\mathbf{Q} \xi=0$ only if $\mathbf{P}^{*}(\sigma) \xi \equiv 0$. From the definition of $\mathbf{P}(\cdot)$, this would mean that each term $\sigma^{k} \mathbf{B}^{*} \mathbf{A}^{* k} \mathbf{E}_{k} \xi$ would have to vanish and, by the Lemma, this would imply $\mathbf{E}_{k} \xi=0$ for each k.

Hence, from (2.11), $\mathbf{Q} \xi=0$ would give $\xi=0$ and we have thus shown that $\mathbf{Q} \xi=0$ only for $\xi=0$. For an $n \times n$ matrix \mathbf{Q}, this ensures invertibility.

4 Results

We must draw the desired conclusions from (3.3).
It is clear from the bound on $\mathbf{R}_{1}(T, \sigma)$ and the obvious fact that $\mathbf{P}(\sigma)$ is bounded uniformly on $[0,1]$ that $\mathbf{R}_{2}(T, \sigma)$ is uniformly bounded so $\mathbf{R}_{3}(T)$ is uniformly bounded - say, $\left\|\mathbf{R}_{3}(T)\right\| \leq M_{3}$ for $0 \leq T \leq 1$. Restricting attention to $T \leq 1 / 2 M_{3}\left\|\mathbf{Q}^{-1}\right\|=: \tau$, we have

$$
\begin{aligned}
\left(\mathbf{Q}+T \mathbf{R}_{3}\right)^{-1} & =\mathbf{Q}^{-1}\left(\mathbf{1}+T \mathbf{Q}^{-1} \mathbf{R}_{3}\right)^{-1} \\
& =\mathbf{Q}^{-1}+T \mathbf{R}_{4}(T)
\end{aligned}
$$

with

$$
\begin{aligned}
\left\|\mathbf{R}_{4}\right\| & \leq\left\|\mathbf{Q}^{-1}\right\|\left\|\left(\mathbf{1}+T \mathbf{Q}^{-1} \mathbf{R}_{3}\right)^{-1}-\mathbf{1}\right\| / T \\
& =\left\|\mathbf{Q}^{-1}\right\|\left\|\mathbf{Q}^{-1} \mathbf{R}_{3}\left(\mathbf{1}+T \mathbf{Q}^{-1} \mathbf{R}_{3}\right)^{-1}\right\| \\
& \leq\left\|\mathbf{Q}^{-1}\right\|\left\|\mathbf{Q}^{-1} \mathbf{R}_{3}\right\| /\left(1-T\left\|\mathbf{Q}^{-1} \mathbf{R}_{3}\right\|\right) \\
& \leq 2 M_{3}\left\|\mathbf{Q}^{-1}\right\|^{2} \quad \text { for } \quad 0 \leq T \leq \tau
\end{aligned}
$$

Now, inverting each side of (3.3) is legitimate for $T \neq 0$ and gives

$$
\begin{align*}
T^{2 K+1} \boldsymbol{\Gamma}_{T}^{-1} \mathbf{W}_{T} \boldsymbol{\Gamma}_{T}^{-1} & =\mathbf{Q}^{-1}+T \mathbf{R}_{4}, \\
T^{2 K+1} \mathbf{W}_{T}^{-1} & =\boldsymbol{\Gamma}_{T}\left(\mathbf{Q}^{-1}+T \mathbf{R}_{4}\right) \boldsymbol{\Gamma}_{T} \tag{4.1}\\
& =\boldsymbol{\Gamma}_{0} \mathbf{Q}^{-1} \boldsymbol{\Gamma}_{0}+T \mathbf{R}_{5}(T)
\end{align*}
$$

with, obviously, $\left\|\mathbf{R}_{5}(T)\right\|$ uniformly bounded on $0 \leq T \leq \tau$. In particular, this proves (independently of the standard controllability arguments) the invertibility of \mathbf{W}_{T} - at least for small $T>0$ and so a fortiori for all $T>0$ by the non-negativity of the integrand in (2.5).

From (2.6) and the positivity of $\mathbf{W}, \mathbf{W}^{-1}$ we then have

$$
\begin{align*}
\left\|\mathbf{C}_{T}\right\|^{2} & :=\max \left\{\left\|\mathbf{C}_{T} \xi\right\|^{2}:\|\xi\|=1\right\} \tag{4.2}\\
& =\max \left\{\xi \cdot \mathbf{W}_{T}^{-1} \xi:\|\xi\|=1\right\}=\left\|\mathbf{W}_{T}^{-1}\right\| \\
& =T^{-(2 K+1)}\left[\left\|\boldsymbol{\Gamma}_{0} \mathbf{Q}^{-1} \boldsymbol{\Gamma}_{0}\right\|+\mathcal{O}(T)\right] .
\end{align*}
$$

This, of course, is just (1.4) with, from (2.12),

$$
\begin{equation*}
\gamma:=\left\|\boldsymbol{\Gamma}_{0} \mathbf{Q}^{-1} \boldsymbol{\Gamma}_{0}\right\|^{1 / 2}=K!\left\|\mathbf{E}_{K} \mathbf{Q}^{-1} \mathbf{E}_{K}\right\|^{1 / 2} \tag{4.3}
\end{equation*}
$$

once one shows $\mathbf{E}_{K} \mathbf{Q}^{-1} \mathbf{E}_{K} \neq \mathbf{0}$ so $\gamma \neq 0$. Note that the positivity of \mathbf{Q}, hence of \mathbf{Q}^{-1}, gives

$$
\begin{aligned}
\left\|\mathbf{E}_{K} \mathbf{Q}^{-1} \mathbf{E}_{K}\right\| & =\max \left\{\xi \cdot\left(\mathbf{E}_{K} \mathbf{Q}^{-1} \mathbf{E}_{K} \xi\right):\|\xi\|=1\right\} \\
& =\max \left\{\xi \cdot \mathbf{Q}^{-1} \xi:\|\xi\|=1, \xi=\mathbf{E}_{K} \xi\right\} \\
& =\left\|\left.\mathbf{Q}^{-1}\right|_{\mathcal{R}\left(\mathbf{E}_{K}\right)}\right\| .
\end{aligned}
$$

Since $\mathcal{R}\left(\mathbf{E}_{K}\right) \neq\{0\}$ by the minimality of K, this is clearly non-zero.
At this point we work out in somewhat greater detail the case of scalar control ($m=1$). The $n \times 1$ matrix \mathbf{B} is now just a vector and we set

$$
\begin{equation*}
\beta_{0}=\mathbf{B}, \quad \beta_{k}=\mathbf{A}^{k} \beta_{0} \quad \text { for } k=0, \ldots, n-1 . \tag{4.4}
\end{equation*}
$$

Note that controllability gives $K=n-1$ in this case so, for scalar control, our result (4.2) becomes

$$
\begin{equation*}
\left\|\mathbf{C}_{T}\right\| \sim \gamma T^{-(n+1 / 2)}+\mathcal{O}\left(T^{-(n-1 / 2)}\right) \tag{4.5}
\end{equation*}
$$

To compute γ here, note first that $\left(\beta_{0}, \ldots, \beta_{n-1}\right)$ is a basis for \mathbb{R}^{n} and let $\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)$ be the orthonormal basis obtained from that by the GramSchmidt procedure so $\mathbf{E}_{k}: \xi \mapsto\left(\xi \cdot \varepsilon_{k}\right) \varepsilon_{k}$ and $\mathbf{B}^{*} \mathbf{A}^{* k} \mathbf{E}_{k} \xi$ becomes $\left(\beta_{k}\right.$. $\left.\varepsilon_{k}\right)\left(\xi_{k} \cdot \varepsilon_{k}\right)$. Then (3.4) becomes

$$
\begin{equation*}
\mathbf{Q} \xi=\sum_{j=0}^{K-1}\left[\sum_{k=0}^{K-1} \frac{\left(\beta_{j} \cdot \varepsilon_{j}\right)\left(\beta_{k} \cdot \varepsilon_{k}\right)}{j+k+1}\left(\xi \cdot \varepsilon_{k}\right)\right] \varepsilon_{j} . \tag{4.6}
\end{equation*}
$$

This shows that, re-written in terms of the orthonormal basis $\left(\varepsilon_{0}, \ldots, \varepsilon_{n-1}\right)$, the new matrix for \mathbf{Q} is just $\mathbf{D H D}$ where $\mathbf{D}:=\operatorname{diag}\left[\beta_{j} \cdot \varepsilon_{j}\right]$ and \mathbf{H} is the $n \times n$ Hilbert matrix. Then

$$
\begin{aligned}
\left\|\mathbf{E}_{K} \mathbf{Q}^{-1} \mathbf{E}_{K}\right\| & =\varepsilon_{K} \cdot \mathbf{Q}^{-1} \varepsilon_{K} \\
& =\left[\text { lower right corner element of } \mathbf{D}^{-1} \mathbf{H}^{-1} \mathbf{D}^{-1}\right] \\
& =\left(\beta_{n-1} \cdot \varepsilon_{n-1}\right)^{-2} \quad\left[\text { lower right corner element of } \mathbf{H}^{-1}\right]
\end{aligned}
$$

whence

$$
\begin{equation*}
\gamma=C_{n}\left(\beta_{n-1} \cdot \varepsilon_{n-1}\right)^{-1} \tag{4.7}
\end{equation*}
$$

with $\left(C_{n}:=(n-1)!\text {) [lower right corner element of the inverse of } \mathbf{H}\right]^{1 / 2}$. The coefficient C_{n} grows extremely rapidly with n but, of course, is fixed for any given dimensionality. Thus, $\beta_{n-1} \cdot \varepsilon_{n-1}$ provides the only dependence on the particular system (1.1); it is just the norm of the component of $\mathbf{A}^{n-1} \beta_{0}$ orthogonal to span $\left\{\beta_{0}, \ldots, \mathbf{A}^{n-2} \beta_{0}\right\}$.

Returning to the general case, we now consider the asymptotics for a particular target ξ (rather than the 'worst case' treatment above). We have, from (2.6),

$$
x(T ; u(\cdot))=\xi \Longrightarrow\|u(\cdot)\| \geq\left\|\mathbf{C}_{T} \xi\right\|=\left(\xi \cdot \mathbf{W}_{T}^{-1} \xi\right)^{1 / 2}
$$

From (4.1) we have

$$
\left\|\mathbf{C}_{T} \xi\right\|=T^{-(K+1 / 2)} K!\left(\xi_{K} \cdot \mathbf{Q}^{-1} \xi_{K}\right)^{1 / 2}+\mathcal{O}\left(T^{-(K-1 / 2)}\right)
$$

where we have abbreviated $\xi_{K}:=\mathbf{E}_{K} \xi$. We may write this, assuming ${ }^{6} \xi_{K} \neq$ 0 , as
(4.8)

$$
\begin{equation*}
\left\|\mathbf{C}_{T} \xi\right\| \sim\left(K!\left\|\mathbf{Q}^{-1 / 2} \xi_{K}\right\|\right) T^{-(K+1 / 2)} \tag{4.8}
\end{equation*}
$$

which gives the same asymptotic growth rate for (almost all) targets.

[^4]
References

[1] E.N. Güichal, A lower bound of the norm of the control operator for the heat equation, J. Math. Anal. Appl. 110, pp. 519-527 (1985).
[2] W. Krabs, G. Leugering, and T.I. Seidman, On boundary controllability of a vibrating plate, Appl. Math. Opt. 13, pp. 205-229 (1985).
[3] T.I. Seidman, Boundary control and observation for the heat equation, in Calculus of Variations and Control Theory (D.L. Russell, ed.), pp. 321-351, Academic Press, N.Y., (1976).
[4] T.I. Seidman, Two results on exact boundary control of parabolic equations, Appl. Math. Opt. 11, pp. 145-152 (1984).

[^0]: ${ }^{1}$ This research was partially supported under grant AFOSR-82-0271. Portions of this were done while the author was visiting at the Systems Research Center (U. of Md.) with NSF support under CDR-85-00108 and at the Centre for Mathematical Analysis (Australian National University). This paper appeared in Math. of Control, Signals, Syst. 1, pp. 89-95 (1988).
 ${ }^{2}$ Department of Mathematics, University of Maryland Baltimore County, Baltimore, MD 21250, USA. (seidman@math.umbc.edu)

[^1]: ${ }^{3}$ The uniqueness of $u_{\text {opt }}$ and the linearity of the map: $\xi \mapsto u_{o p t}$ follow from the Hilbert space projection theorem under more general conditions than here. From uniqueness it follows that $\left\|u_{\text {opt }}\right\|$ is strictly decreasing in T for each $\xi \neq 0$.

[^2]: ${ }^{4}$ One has $\log \left\|\mathbf{C}_{T}\right\|=\mathcal{O}(1 / T)$ (sharply) for the known infinite-dimensional cases [4], [1], [2].

[^3]: ${ }^{5}$ Note that our estimation of \mathbf{R}_{1} precisely legitimates the use of the $\mathcal{O}(T)$ notation.

[^4]: ${ }^{6}$ This is 'almost always' true - it fails only when ξ happens to lie exactly in the (proper) subspace $\mathcal{N}\left(\mathbf{E}_{K}\right)$ in which case one has slower blowup. Even in that case slight perturbations would, almost inevitably, give some component in $\mathcal{R}\left(\mathbf{E}_{K}\right)$ so this analysis would dominate.

