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ABSTRACT:

For any controllable linear system it is clear that the minimum control
energy must increase unboundedly as the available time for exact control
decreases to 0. This is made precise, obtaining asymptotically O(T−(K+1/2)
behavior for the norm of the control operator where K is the order of the
‘least controllable’ modes (the minimal exponent for the rank condition).
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1 Introduction

Consider a linear control system

ẋ = Ax + Bu , x(0) = 0(1.1)

with A,B constant matrices (n × n and n ×m, respectively, so x(·) is IRn-
valued and the control u(·) is IRm-valued). Assuming this is controllable, we
know that for each terminal time T > 0 and each target ξ ∈ IRn there exist
controls u(·) giving x(T ) = ξ and, indeed, that there is unique such control

uopt = uopt(·; T, ξ) ∈ L2([0, T ] → IRm) =: U = UT(1.2)

minimizing ‖u‖. The norm to be minimized is, of course, taken to be that
of U = L2([0, T ] → IRm) so ‖uopt‖2 gives the least control energy needed to
reach the target ξ at time T .

It is to be expected that more violent control would be needed as the time
T available becomes shorter3. Our object in this paper is to give a precise
(asymptotic) answer to the question of the title. Since the optimal control
uopt is given by a linear operator

CT : ξ 7→ uopt(·; T, ξ) : IRn −→ U = UT ,(1.3)

the principal result can be stated as

‖CT‖ ∼ γT−(K+1/2) as T → 0(1.4)

where K is the minimal exponent giving the well known rank condition for
controllability:

rank [B,AB, . . . ,AKB] = n(1.5)

and γ 6= 0 is also computable from A,B.
It is worth noting that this also estimates sensitivity for observation of

the adjoint problem. If one can observe y := B∗z for a solution z of the
equation ż = −A∗z, then one easily sees that one recovers the state through
z(T ) = C∗

T y(·). This means that the uncertainty in the recovered state due
to noise or measurement error e(·) in the observation can be estimated by

3The uniqueness of uopt and the linearity of the map: ξ 7→ uopt follow from the Hilbert
space projection theorem under more general conditions than here. From uniqueness it
follows that ‖uopt‖ is strictly decreasing in T for each ξ 6= 0.
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‖C∗
T e(·)‖ ≤ ‖CT‖ ‖e(·)‖. The same result (1.4) shows how sensitivity to

error increases as the observation time shrinks: since, plausibly, we might
anticipate

Exp[
∫ T

0
|e|2dt] ∼ σ2T, i.e., Exp[‖e(·)‖] ∼ σT 1/2,

the sensitivity estimate becomes

expected ‖ uncertainty in z(T )‖ ∼ γσT−K as T → 0.(1.6)

The formula (2.3) is classical but it is interesting to observe historically
that the question of the title seems to have been considered first for dis-
tributed parameter systems4 although it was posed for the present finite
dimensional case at least as far back as 1975 [3].

2 Formulation

Treatment of (1.1) is expressible in terms of the matrix exponential, given
by the convergent series

esA :=
∞∑
0

(sk/k!)Ak.(2.1)

The solution x of (1) is then given by

x(t) =
∫ t

0
e(t−s)ABu(s)ds

so, in particular, one has x(T ) = Vu(·) where

V = VT : U → IRn : u(·) 7→
∫ T

0
e(T−s)AB u(s)ds.(2.2)

A standard argument shows that ‖u(·)‖U is minimized, subject to the condi-
tion Vu = ξ, by taking u ∈ R(V∗) whence

uopt(· ; T, ξ) = V∗ω with, necessarily, VV∗ω = ξ;

4One has log ‖CT ‖ = O(1/T ) (sharply) for the known infinite-dimensional cases [4],
[1], [2].
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so one has CT : ξ 7→ uopt given by

CT = V∗
T (VTV∗

T )−1(2.3)

where controllability gives, as we see, invertibility of VTV∗
T =: WT = W.

We easily see that V∗ : IRn → U is given by

[V∗ω](t) = [e(T−t)AB]∗ω for t ∈ [0, T ](2.4)

so the n× n matrix W := VV∗ is given by

W = WT =
∫ T

0
esAB[esAB]∗ds.(2.5)

Clearly, W is self-adjoint and (at least) semidefinite from its form. We have
the identity

‖uopt‖2 = ‖CT ξ‖2 = 〈V∗W−1ξ, V∗W−1 ξ〉(2.6)

= (W−1ξ) · (VV∗W−1ξ) = (W−1
T ξ) · ξ

which makes it clear that our object must be to compute W−1
T asymptotically.

The key to our approach is the invertibility of

Q := lim
T→0

T−(2K+1)ΓTWTΓT ,(2.7)

using a suitable family of operators Γ = ΓT such that

ΓT invertible for T 6= 0 , ΓT = Γ0 +O(T );(2.8)

see (2.12), below.
Given the matrices A,B we consider the nested sequence (S0,S1, . . .) of

subspaces of IRn given recursively by

Sk = Sk−1 +R(AkB) with S−1 := {0},(2.9)

S0 = R(B), S1 = R(B) +R(AB), . . .

so each Sk is the column space (range) of the composite matrix [B,AB, . . . ,AkB].
The assumption of controllability means that SK = IRn for large enough K
(i.e., (1.5)) and we fix K as the minimal exponent/index giving this.
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For each k (0 ≤ k ≤ K) we can find the orthogonal complement of Sk−1

in Sk and let Ek be the orthogonal projection on this subspace. This gives
the important fact that

EkA
jB = 0 for j < k ≤ K(2.10)

since j < k gives R(AjB) ⊂ Sk−1 ⊂ N (Ek). We observe, although we do
not need the fact, that

m ≥ dimR(B) = dimR(E0) ≥ dimR(E1) ≥ . . . ≥ dimR(EK);

we will need the fact that SK−1 6= SK = IRn by the definition of K so
dimR(EK) 6= 0 and EK 6= 0. The construction of {Ek} gives a direct sum
decomposition

1 = E0 + . . . + EK , IRn = ⊕K
0 R(Ek),

Sk = R(E0)⊕ . . .⊕R(Ek) for k = 0, . . . , K.(2.11)

Thus, introducing

Γ = ΓT :=
K∑
0

k! TK−kEk(2.12)

we see that (2.8) holds with Γ0 = K!EK 6= 0.

3 Principal Computation

Our object in this section is to obtain (2.7), with ΓT as in (2.12), computing
Q and showing it is invertible.

The integral expression (2.5) gives, on substituting s = Tσ,

T−(2K+1)ΓWΓ =
∫ 1

0
[T−KΓeTσAB][T−KΓeTσAB]∗dσ.

Using (2.12) and (2.1), we have (for T > 0)

T−KΓeTσAB =
K∑

k=0

k!T−kEk

∞∑
j=0

σj

j!
T jAjB

=
K∑

k=0

∞∑
j=0

k!σj

j!
T j−kEkA

jB.
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By (2.10), the terms with j < k vanish so no negative powers of T actually
appear on the right; we then split the sum into the terms with j = k and
those with j ≥ k + 1 for which we set i = j − (k + 1) = 0, 1, . . .. Thus,

T−KΓeTσAB =
K∑

k=0

σkEkA
kB

+T

[
K∑

k=0

∞∑
i=0

k!σi+k+1T i

(i + k + 1)!
EkA

jB

]
(3.1)

= P(σ) + TR1(T, σ).

Restricting our attention to T ≤ 1, which is certainly permissible as we are
only interested in the limit T → 0, an easy estimation gives the uniform
bound

‖R1(T, σ)‖ ≤
K∑

k=0

∞∑
i=0

‖A‖i+k+1‖B‖/(i + 1)!

= (1 + . . . + ‖A‖K)‖B‖(e‖A‖ − 1)

since (i + k + 1)! ≥ (i + 1)! k!. Hence, (3.1) gives5

T−KΓ eTσAB = P(σ) +O(T )

and
(T−KΓeTσAB) (T−KΓeTσAB)∗(3.2)

= [P(σ) + TR1(T, σ)] [P(σ) + TR1(T, σ)]∗

= P(σ)P∗(σ) + TR2(T, σ),

with R2(T, σ) := (R1P
∗ + PR∗

1 + TR1R
∗
1) uniformly bounded. Thus, inte-

grating,
T−(2K+1)ΓWΓ = Q +O(T )(3.3)

with O(T ) = T
∫
R2dσ =: TR3(T ) and

Q :=
∫ 1

0
P(σ)P∗(σ)dσ(3.4)

=
K∑

j,k=0

(j + k + 1)−1EjA
jBB∗A∗kEk.

5Note that our estimation of R1 precisely legitimates the use of the O(T ) notation.
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We must show that Q is invertible.

Lemma : B∗A∗kEkξ = 0 =⇒ Ekξ = 0.

Proof : For any ξ ∈ IRn we have Ekξ ∈ Sk := Sk−1 +R(AkB) by definition
so we may write

Ekξ = AkBη + ξ′ (ξ′ ∈ Sk−1)

for some η ∈ IRm. Then, assuming B∗A∗kEkξ = 0, we would have

‖Ekξ‖2 = (AkBη + ξ′) · (Ekξ)

= η · (B∗A∗kEkξ) + (Ekξ
′) · ξ = 0

since Ekξ
′ = 0 for ξ′ ∈ Sk−1.

From (3.4) we see that

ξ ·Qξ =
∫ 1

0
ξ · [P(σ)P∗(σ)ξ]dτ =

∫ 1

0
‖P∗(σ)ξ‖2dτ

so Qξ = 0 only if P∗(σ)ξ ≡ 0. From the definition of P(·), this would mean
that each term σkB∗A∗kEkξ would have to vanish and, by the Lemma, this
would imply Ekξ = 0 for each k.

Hence, from (2.11), Qξ = 0 would give ξ = 0 and we have thus shown
that Qξ = 0 only for ξ = 0. For an n×n matrix Q, this ensures invertibility.

4 Results

We must draw the desired conclusions from (3.3).
It is clear from the bound on R1(T, σ) and the obvious fact that P(σ)

is bounded uniformly on [0, 1] that R2(T, σ) is uniformly bounded so R3(T )
is uniformly bounded – say, ‖R3(T )‖ ≤ M3 for 0 ≤ T ≤ 1. Restricting
attention to T ≤ 1/2M3‖Q−1‖ =: τ , we have

(Q + TR3)
−1 = Q−1(1 + TQ−1R3)

−1

= Q−1 + TR4(T )

with

‖R4‖ ≤ ‖Q−1‖ ‖(1 + TQ−1R3)
−1 − 1‖/T

= ‖Q−1‖ ‖Q−1R3(1 + TQ−1R3)
−1‖

≤ ‖Q−1‖ ‖Q−1R3‖/(1− T‖Q−1R3‖)
≤ 2M3‖Q−1‖2 for 0 ≤ T ≤ τ,
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Now, inverting each side of (3.3) is legitimate for T 6= 0 and gives

T 2K+1Γ−1
T WTΓ−1

T = Q−1 + TR4,

T 2K+1W−1
T = ΓT (Q−1 + TR4)ΓT(4.1)

= Γ0Q
−1Γ0 + TR5(T )

with, obviously, ‖R5(T )‖ uniformly bounded on 0 ≤ T ≤ τ . In particular,
this proves (independently of the standard controllability arguments) the
invertibility of WT — at least for small T > 0 and so a fortiori for all T > 0
by the non-negativity of the integrand in (2.5).

From (2.6) and the positivity of W,W−1 we then have

‖CT‖2 := max{‖CT ξ‖2 : ‖ξ‖ = 1}(4.2)

= max{ξ ·W−1
T ξ : ‖ξ‖ = 1} = ‖W−1

T ‖
= T−(2K+1)[‖Γ0Q

−1Γ0‖+O(T )].

This, of course, is just (1.4) with, from (2.12),

γ := ‖Γ0Q
−1Γ0‖1/2 = K!‖EKQ−1EK‖1/2(4.3)

once one shows EKQ−1EK 6= 0 so γ 6= 0. Note that the positivity of Q,
hence of Q−1, gives

‖EKQ−1EK‖ = max{ξ · (EKQ−1EKξ) : ‖ξ‖ = 1}
= max{ξ ·Q−1ξ : ‖ξ‖ = 1, ξ = EKξ}
= ‖Q−1|R(EK)‖.

Since R(EK) 6= {0} by the minimality of K, this is clearly non-zero.
At this point we work out in somewhat greater detail the case of scalar

control (m = 1). The n× 1 matrix B is now just a vector and we set

β0 = B, βk = Akβ0 for k = 0, . . . , n− 1.(4.4)

Note that controllability gives K = n − 1 in this case so, for scalar control,
our result (4.2) becomes

‖CT‖ ∼ γT−(n+1/2) +O(T−(n−1/2)).(4.5)
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To compute γ here, note first that (β0, . . . , βn−1) is a basis for IRn and let
(ε0, . . . , εn−1) be the orthonormal basis obtained from that by the Gram-
Schmidt procedure so Ek : ξ 7→ (ξ · εk)εk and B∗A∗kEkξ becomes (βk ·
εk) (ξk · εk). Then (3.4) becomes

Qξ =
K−1∑
j=0

[
K−1∑
k=0

(βj · εj)(βk · εk)

j + k + 1
(ξ · εk)

]
εj.(4.6)

This shows that, re-written in terms of the orthonormal basis (ε0, . . . , εn−1),
the new matrix for Q is just DHD where D := diag [βj · εj] and H is the
n× n Hilbert matrix. Then

‖EKQ−1EK‖ = εK ·Q−1εK

= [lower right corner element of D−1H−1D−1]

= (βn−1 · εn−1)
−2 [lower right corner element of H−1]

whence
γ = Cn(βn−1 · εn−1)

−1(4.7)

with (Cn := (n− 1)!) [lower right corner element of the inverse of H]1/2. The
coefficient Cn grows extremely rapidly with n but, of course, is fixed for any
given dimensionality. Thus, βn−1 · εn−1 provides the only dependence on
the particular system (1.1); it is just the norm of the component of An−1β0

orthogonal to span {β0, . . . ,A
n−2β0}.

Returning to the general case, we now consider the asymptotics for a
particular target ξ (rather than the ‘worst case’ treatment above). We have,
from (2.6),

x(T ; u(·)) = ξ =⇒ ‖u(·)‖ ≥ ‖CT ξ‖ = (ξ ·W−1
T ξ)1/2.

From (4.1) we have

‖CT ξ‖ = T−(K+1/2)K!(ξK ·Q−1ξK)1/2 +O(T−(K−1/2))

where we have abbreviated ξK := EKξ. We may write this, assuming6 ξK 6=
0, as

‖CT ξ‖ ∼ (K!‖Q−1/2ξK‖)T−(K+1/2),(4.8)

which gives the same asymptotic growth rate for (almost all) targets.

6This is ‘almost always’ true — it fails only when ξ happens to lie exactly in the
(proper) subspace N (EK) in which case one has slower blowup. Even in that case slight
perturbations would, almost inevitably, give some component in R(EK) so this analysis
would dominate.
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