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Abstract: A brief introduction to distributed parameter syste
erned by linear partial differential equations:

abstract ODEs and semigroups, duality of observation and nullc
nullcontrolability and stabilization, geometry and the wave equat
trol of the heat equation.

Much is like standard system theory (with Linear Algebra replaced
Analysis), but we also emphasize the role of geometry.
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An outline:

1. Some examples and questions
2. Reformulation as abstract ODEs; Semigroups

3. A basic Duality Theorem

4. Some results
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Example 1: an optimal control problem

Suppose we are given a region 2 C R? and consider the heat eque
equation)

Ut = Ugy + Uy + ¢ on @ =(0,T7) x Q
(1) u =10 on (0,7 x OS2
U = U onatt =0

Fix a subregion w C ().

Problem 1:  Given ug and a target @ in L*(€2), choose ¢ € I
minimize

2) T(p) = / ot V2t + NJu(T, ) — al]

subject to the condition that (¢, z,y) = 0 when (z,y) & w.
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What would we like to know?

1. Is (1) well-posed?

2. Is the minimum attained?
[How does this depend on u¢? on a7 on T'7 on w?]

3. Which targets u can be reached exactly? are they dense? H
depend on 17 on w?

4. How can we compute the optimal control?
Can we characterize the optimal control (first order optimality ¢

5. What happens as A\ — 0o? [nullcontrol: % = 0]
What are the asymptotics as T — 07
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Example 2: an observation problem

We again consider

Ut = Ugy + Uy, on @ =(0,T) x Q
(3) u =70 on (0,7T) x 0
u=" onatt=0

Problem 2:  Given w C 2, we observe u on Q, = (0,7T) X «
estimate @ for u(T, -) — the state on all of €.
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What would we like to know?

1.If y=u| =0on Q,, does that imply ©u = 0 on all of Q7

2. What would be the effect of observation noise?

3. What would be an ‘optimal’ map: y —
Is this linear? continuous?]

4. How is this problem related to the previous one?

2007 Summer School: Optimization and Control with Applications in Modern Te



Example 3: another optimal control problem

Suppose we are given a region 2 C R? and consider the wave equ

Wit = Wy + Wy + @ on @ =(0,7T) x Q
(4) w =0 on (0,7) x 9%
W =wy wWy=w onatt =0

Fix a subregion w C ().

Problem 3:  Given uy = [wy, w1} and a target state u = [wy, «
L*(9)), choose ¢ € L*(Q) so as to minimize

T
g 70 = [ et NFdt + N (T )~ al?

subject to the condition that ¢(t, x,y) = 0 when (z,y) € w.
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What would we like to know?

1. All the same questions as for Example 1

2. How are these problems (Examples 1, 3) similar? different?
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Semigroups and abstract ODEs:

Let S(t) - X — X : up — u(t) for the solution of the (linear
abstract ODE

(6) u = Au u(0) = ug

Assuming wellposedness, we have

7 Slt+s)=8(HS(s) S(0)=1 %ﬂ _ AS(f) = S(1).
S(t)uy — ug (all ug € X) IS < Me*t  (some

The semigroup S(t) = e is defined on X if:
A closed, D(A) dense, (A —w)"||(A — A)™"|| bounded.

If t — S(t) is analytic on a sector, then: ||[[—A]*S(t)|| < Mt~ e
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Dirichlet Laplacian:

We consider the Dirichlet Laplacian to be the (unbounded) line
Xo = L*(Q) given by

AZXO :L2<Q)DD<A)—>X0’LL|—>U;E$—|—UWJ

(8) with  D(A) = {u c H*(Q) : u‘m = O}

This satisfies the conditions to generate a semigroup S(-) so, for Ex
(1) <= v =Au+Byp, u(0) =1

(9) = u(t) =S(tuy + J; S(t — s)Byp(s)ds

where B : U = L*(w) — X.
For this Example the semigroup S(+) is analytic.

2007 Summer School: Optimization and Control with Applications in Modern Te



Two other examples:

The wave equation (4) wy = Aw + ¢ can be written as a first
u’ = Au + ¢ by setting

()

Here S(-) is not analytic.

[Alternatively, u = (Vw, w;)" gives u; = Vo, vy = V - u.]
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The system for a linear thermoelastic plate

(10) wit + A*w — @AY = 0 9 — A + adw; =
(control in the thermal component) can be put in first order form b
v v A 0 —aA
u=\|u | =1 Aw A = 0 0 A %
v (& aA —=A 0
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Some inverse problems:

Problem 4: We observe y(-) = Cu(-) on [0, T] with u satisfyi
f, u(0) = 0— f an unknown input which we would like to determine
treat this as an optimal control problem for the equation v" = Awv -
choosing the control ¢ to minimize J(¢) = €||¢||5+ A||Cv — yH[ZU a
©Yopt as the estimate for f.

Problem 5: Longitudinal vibration of a straight viscoelastic ro
linearized equation wy = W, +ew,¢. Assume this is fixed at one en
and an unknown contact force f(t) at the other end ([w, +ew,]

an observed motion g(-) = w(-, £). We wish to find f(-) by replagiZg

which minimizes the observation error ||w(-,¢) — g||.

Problem 6: Let u; = u,, — qu with u(-,0) = 0 and u,(-,¢) =
a(-) for an experiment designed to determine the unknown function
observation of y(-) = u(-, £).
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Abstract control problem:
The abstract version of the optimal control problem is then

Approzimate u by Spugy + By with ||p||lu small.
with S = S(T') and, in view of (9),
T
%ZU%X:Q&*—)/ S(T — s)Bep(s)ds
0
where U is a Banach space of U-valued functions on [0, T7.

For the Hilbert space case U = L*([0,T] — U) of (2), minimizin,
T (@) = |lelli + A|Srug + By — ul|? gives the first order optime
@+ B*ANSruyg+ B —1u) =0

so = —MNI+AB*B)B*(Sru; — 1)
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The adjoint problem:

We must compute the adjoint 2B5*: consider
(11) —v' =A%, vT)=n sov(t)=S"(T—1t)y

(referred to as the adjoint equation). Then

Be,n) =),v(T) = (u(t),v())
T[(Au + B, v) + (u, —A*v)| dt
T(ga, B*v) dt

S—

SO B X' —=>U" :n—y(-)=Bo()

[Note that the map: y(-) — v(0) = S*(T")n — if it is defined — give
estimation of Example 2 (although there is a time reversal involved
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The Duality Theorem:

What happens if A — oo (exact nullcontrol: w = 0)7 We asst
Sr: X — X and B : U — X are continuous.

Theorem 1. The following are equivalent:

1. For each uy € X there is a nullcontrol ¢ € U so Spug + B
2. One has the range containment R(St) C R(B) in X

3. There is a continuous map: I' : X — U such that S7 + *BI -

4. For solutions of the adjoint equation: —v' = A*v, one has «
inequality:
(12) [0(0)[lx < ¢f|B v (:)]|vs
soT'1 : R(B*) — X* : B*v(:) = —v(0) is defined and contina

If [|[pllu < €]jugl| in 1., then this € is the same as in (12) and ||T';
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Proof of the Duality Theorem:

Clearly 1.<=-2. and 3.=1. To show 1.=-3., let U be the quotient s
and define an operator

M:XX@%X:(HO,[QODHSTHQ—I—%QO

This is continuous so N (M) is closed — and is the graph of a |
T'y: X — U:uy— [¢p] since [¢] is unique in N (M). As 1. me
everywhere defined on the Banach space X, its continuity follows
Graph Theorem; we can then appeal to the Michael Selection Theo

Note that we may identify U* with R(B8*) and, by the earlic
of B*, the operators I'y, I'y are indeed adjoints; hence 3.<=-4.

[In a Hilbert space setting (U* = U), we can identify the quotient sp
subspace N'(B)+ = R(B*) — UandI' : X — U is linear; then ||T
This theorem is the heart of Lions” Hilbert Uniqueness Method (1
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A boundary control problem:

Unlike ODEs, one can have control which apparently does not

differential equation itself. For example, consider

Ut = Ugy + Uy on Q@ =(0,T) x Q
(13) U= on (0,7T) x 9%
U = Uy on att=0

Problem 7: Much as for Problem 1 — except that the control
choice of boundary data, constrained so ¢ = 0 except on a specifie
with the control space U a space of functions on >, = |0,7] X w.
[Similar problems of boundary control (or observation: Example 2
for other equations, such as the wave equation.]

B is defined as the value at T" of the solution of the equation with
initial data ug = 0. If this map is continuous: U — X, then the Du
continues to apply. One must be very careful (especially for the v
with appropriately specifying the spaces involved and checking regt
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A trick:

For a boundary control patch w open in OS2, there is a simple tricl
boundary problem above to Example 1, involving an interior contrc

Artificially, add a ‘bump’ to €2 such that the interface between the
lies within w C 9€2; call the new region €2'. Artificially define a cont
the interior of the bump, hence in €. Embed X in a space of func
e.g., extending each ug as 0 on the bump. If one can then control t
control on w’; then the trace on [0, T X w of the resulting solution
a nullcontrol for the original boundary control problem.

[Essentially the same trick works for the observation problem of Ex
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A damping inequality and stabilization:

Our first damping inequality is: there are K, v with ¥ < 1 for wl

for every uy in X there is some ¢ on [0, T] such that
(14) 1S7uo + Bre| < Ijuol 1@llo < Kljuol

Given (14), recursively set u; = u(37") = Syu,;—1 + BrY,_1 and
JT, (j + 1)T] from it (ug <= u;). Concatenating these intervals giv
such that (for any (o < [Ind|/T)

%M=A[M%HM%Mﬁ<w

The map I : vy — the J,-minimizing control is linear and continu
K : u +— [Tu](0) is continuous (evaluation at the initial point), a
©(+) in feedback form: (t) = Ku(t) so A+ BK generates an expor
semigroup.

[We only mention the considerable work on use of the algebraic Ri
(ARE for operators on infinite dimensional Hilbert spaces) to obtai
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Two abstract results:

We know two abstract results to obtain nullcontrolability from da

Theorem 2. Suppose, much like (14), one has T, K, with 9 -
for each initial state u there exists u and a control ¢ on |0,
lollu < K||ul| and ||St(u — u1) + Bre|| < J||u||. Then for eack
nullcontrol ¢ such that ||¢|lu, < €||lug|| with € < K/(1 —19).

Proof:  Recursively obtain ¢; on |0, 7] and ;41 = u; such that

il < Klfugll Mgl < Dyl Srlwj —ujia) + B
Take ¢ = > 7 ¢, and summing the telescopic series Y Sp(uj — w4
shows ¢ is a nullcontrol for wy.
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Theorem 3. Suppose there exist c,d > 0 such that, for any T
for each ug there exists ¢ on |0, 7] for which

lellu < elluoll, IS0 + Bl < e lugl].

Then one has ‘rapid nullcontrolability’ (all T > 0): for each T,
nullcontrol ¢ on [0,T] with ||¢||u, < €||luol| for € =eT if ¢ > (

Proof: Choose ¢/(c+d) < r <1 (soe =1-=(c/d)(1—1)/t
0 = (1 —9)T so, with ¢ty = 0, t;41 = t; + 7;, one has the partiti
for [0,77). Recursively obtain ¢; on [¢;,¢;41] and set w41 = S
Concatenating gives ¢ on [0,T]. It is easy to see that ||u,|| — 0
nullcontrol. A slightly messy estimation shows |||y < 2||¢;|] <
¢ = c¢/(1 — r) and optimizing the choice of r concludes the proof.
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Geometry and the wave equation:

For the classical wave equation disturbances/information propags

so there is necessarily a minimum observation time to ‘see’ any pa
outside the observation patch w: the key to understanding the ge
wave equation is ray tracing with this propagation speed.

Consider the 1-D wave equation wy; = w,., corresponding to si

vibrations of a string — which we fix at one end (w = () with
0

of the other end (x = /) as control. Now think of this as a semi
without control and with data vanishing outside [0, ¢] Ray tracing -
w(t,x) = f(r+1t) + glx —t) with f, g matching the data — shc
vanish within |0, £] for ¢ > 2¢ so we can take w(-, £) for this solution
Note that the longest ‘ray’” within €2 = (0, £), allowing for the reflec
has length 2/¢: exactly the control time found.
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Geometry and the wave equation, continued:

Let L be the sup of lengths of rays (geodesics), allowing for s

tion at the noncontroling part of the boundary, until entering the
[t was shown by Bardos-Lebeau-Rauch (1992) that the minimum
controlability is, indeed, L. The necessity of this for nullcontrolabil

tion/prediction seems obvious (and trapped rays should preclude nu
for any T at all), but one needs sufficiency.

Neglecting many technical difficulties, one notes from Scat
that (e.g., for “star-complemented regions”) in suitable time T a
fraction of the initial energy will exit through the control portion of

so, using this trace as ¢, one obtains a damping inequality as in 'l
nullcontrolability follows.
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Geometry and the heat equation:

Boundary nullcontrolability had been known for the 1-D case vic

monic analysis and spectral expansion — separately for observatio:
control as Theorem 1 was then unknown.

Essentially the result for the wave equation noted above was
(1973) and he also used this to show, by a harmonic analysis argur
Miller’s (2004) related use of the “transmutation method”) corresp
ary nullcontrolability for the heat equation; Seidman (1976) showed
boundary nullcontrolability (using all of 9€2) directly from the 1-dim
by embedding €2 in a cylinder. It was shown in (1984) that Russ
gave € = ePW/T) for the heat equation.

Nullcontrolability from an arbitrary open control patch w
shown (Lebeau-Robbiano, 1995) using Carleman inequalities, a tec
obtain a quantitative form of uniqueness from data on a patch. [T
enough technicalities not to describe it here.]
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Rapid patch nullcontrolability of the heat equation:

We use instead an argument based on a deep theorem of Jerison
eigenfunctions of A (itself obtained using Carleman inequalities):

Theorem 4. (JL) Let {(2;,\;)} be the eigenpairs of A so 0 <,
Then for open w C S there is v > 0 such that, for allc > 0 and
w € Z, =span{z; : \; < o}, one has

(15) [ uts)ds < 2 [ o) as

To show patch nullcontrolability of the heat equation, note that
with control on all of Q (¢ = O(1/+/T) ). Split uy = ve+w, with w,
the observation inequality for this whence Theorem 4 gives a similar i
Q,, for Z, with a factor e7V77/2 whence nullcontrol with that estim
control spillover to v,, is dominated, for large o = (s/7)?, by the e
the uncontroled second half of [0, 7]. Combining gives a damping inec
to apply Theorem 3which shows that the heat equation is rapidly 1
on w with control norm blowup € = ¢©W/T) as T — 0.
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A couple of open problems:

We would be incomplete without noting at least a couple of open

e The same argument as was used just above for the heat equat
rapid nullcontrolability for the thermoelastic plate with control
patch w in just one component. However, the trick noted earlic
boundary nullcontrolability from this does not work for coupled
wants control only in one component; a similar difficulty arises if
conditions are different for w, . How can one then show rapid nu

here with ¢ = ¢91/T)?

e For all of this we have implicitly assumed w to be an open sub
0S2). For open w, what are the asymptotics as w shrinks to a p
obtain similar results if control is restricted instead to a subset
having positive measure? [This kind of question arises, e.g., in c
bang-bang theorems for constrained control]
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e And of course we have not touched yet on problems involving cons
or nonlinear equations or non-additive control or shape control ¢
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