
Asymptotic Analysis 50 (2006) 93–120 93
IOS Press

Blowup estimates for observability
of a thermoelastic system

Irena Lasiecka a and Thomas I. Seidman b

a Department of Mathematics, University of Virginia, Charlottesville, VA 22903
E-mail: il2v@virginia.edu
b Department of Mathematics and Statistics, University of Maryland Baltimore County,
Baltimore, MD 21250
E-mail: seidman@math.umbc.edu

Abstract. With observation restricted to a single component: displacement, velocity, or temperature, we consider observability
of the nonscalar thermoelastic system

[1 − γ∆]wtt + ∆2w − α∆θ = 0, θt − ∆θ + α∆wt = 0,

coupling heat conduction with a Kirkhoff or Euler–Bernoulli plate model. One does have observability in arbitrarily short time
here, but necessarily has blowup of the sensitivity as the observation time T → 0 and also as the coupling coefficient α → 0.
In this paper we are able to examine the asymptotics of this blowup for two situations: global observation (i.e., on all of Ω)
and, with significant restrictions, boundary observation. The blowup rates obtained are of optimal order: O(T−5/2) for global
observation, corresponding to what is known for 3-dimensional systems, and exponential in O(1/T ) for boundary observation,
corresponding to what is known for scalar PDE problems. Our methods permit us also to obtain asymptotics as α → 0 – a
question which can only arise for systems.

Keywords: parametric asymptotics, minimal energy, blowup, thermoelastic system, observation time, coupling parameter,
system components, distributed parameter systems, partial differential equations

1. Introduction

Beginning with [20], blowup estimates for the parametric dependence of observation and control have
been considered in a variety of contexts, for both finite and infinite-dimensional dynamics: cf., e.g., [21,
24,13,23,8,22,2,3,25,17–19] – obtaining the asymptotic dependence as T → 0 of the coefficient C in
observability estimates

‖state at time T‖ � C‖observation during [0, T ]‖, (1.1)

so C bounds the norm of the observability map: observation �→ state.

Remark 1.1. It is well-known in the control-theoretic literature that this observability is equivalent to
nullcontrollability for a control problem: the adjoint of the observation map has the interpretation of
providing the minimal energy control in the related nullcontrol problem, taking an initial state to 0 so
the function T �→ C(T ) whose asymptotics we are investigating is also referred to as a minimal energy
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function for nullcontrollability and has dual interest in that context: it indicates the energy needed for
fast control as in the titles of [21,17].

We remark also that interest in study of the asymptotics of minimal energy functions is motivated
not only by such control theoretic considerations, but also by an interesting connection with stochastic
analysis: we note, e.g., Proposition 2.28 in [6] (cf. also [7]):

The transition semigroup Rt : φ �→ E(φ(X(t, ·)) on Cb(H) associated with the Ornstein–Uhlenbeck
process dXt = AX(t) dt + B dW (t) (where W is Wiener cylindrical noise of trace class) satisfies the
estimate:

∣∣∣∣ ∂

∂t
Rtφ(x)

∣∣∣∣ �
∥∥C(t)

∥∥‖φ‖, x ∈ H.

Here T �→ C is the minimal energy function associated with the nullcontrollability problem for the
deterministic system

yt = Ay + Bu, y(0) = x ∈ H

so the singularity at the origin of this transition semigroup is determined by the asymptotic blowup rate
of C for the nullcontrollability map.

Primarily focusing on scalar equations (with the exception of [2,3,25]), the papers cited earlier have
been specifically concerned with the blowup rate as the observation/control time T → 0 for systems
which permit this, i.e., for which one has observability/nullcontrollability in arbitrarily short time. In con-
trast, our concern in this paper is with parametric asymptotics for parametrized families of nonscalar dis-
tributed parameter systems for which observation/control is restricted to a single component. In this we
are concerned not only with the asymptotics as T → 0 – again requiring observability/nullcontrollability
in arbitrarily short time so C(T ) < ∞ for all T > 0 – but also with the dependence on a new parameter,
only meaningful in this context: a coupling parameter α such that the system decouples if α = 0. In
particular, our exposition will be in the context of the thermoelastic system

wtt − γ[∆w]tt + ∆2w − α∆θ = 0,

θt − ∆θ + α∆wt = 0, on Q = QT = [0, T ] × Ω,

w = 0, ∆w = 0, θ = 0 on Σ = [0, T ] × ∂Ω,

(1.2)

coupling the mechanical components w, wt with the temperature θ. The coupling parameter α > 0
appearing in (1.2) reflects the interaction between the two constituent parts of the system: the plate
equation and the heat equation. If we think of Ω as a subset of R

2, then the first equation of (1.2) – say,
decoupled by taking α = 0, is a standard plate equation with “simply supported” boundary conditions;
for γ = 0 we have an Euler–Bernoulli plate.

This may be put in operator form by taking A to be the Laplace operator on the bounded region Ω
with homogeneous Dirichlet conditions:

A : z �→ −∆z : L2(Ω) ⊃ D → L2(Ω),
D = H2(Ω) ∩ H1

0 (Ω) =
{
z ∈ H2(Ω): z|∂Ω = 0

}
⊂ L2(Ω).

(1.3)
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The system (1.2) can then equivalently be written as

Mwtt + A2w + αAθ = 0, θt + Aθ − αAw = 0, (1.4)

where M = Mγ = 1 + γA. Note that the Laplace operator A of (1.3) is self-adjoint, positive definite
on L2(Ω) and invertible with A−1 continuous: L2(Ω) → D ⊂ H2(Ω); most of our analysis would be
unchanged if we considered (1.4) with more general A having these properties. It is known that the
system given by (1.4) written in the 3-component variable (w, wt, θ) generates a strongly continuous
semigroup of contractions on the energy space H∗ ≡ D(A) ×D(M1/2) × L2(Ω).

This system is of interest in its own right and also serves here as an exemplar of our present concerns:
we will examine the asymptotics both as T → 0 and as α → 0. [Note for the latter that when α = 0 no
observation of θ can provide any information whatever about w and vice versa so the coefficient C must
necessarily blow up when α → 0 just as it necessarily blows up when T → 0 – cf., e.g., [22].] The sys-
tem (1.2) further involves the additional parameter γ, related to the significance of rotational forces, and
we note that the nature of the system dynamics is entirely different when γ = 0: the solution semigroup
is then analytic [15,16], while the system has a predominantly hyperbolic character for γ > 0 [14].

To the best of our knowledge, all the available results on parametric asymptotics for nonscalar systems
of partial differential equations with observation/control restricted to a single component have been in
the context of the restricted thermoelastic system: (1.2) with γ = 0, and have restricted attention to
the asymptotics as T → 0, keeping α > 0 fixed [2,3,25]. Thus, our treatment here breaks new ground
in its treatment of the more general system, allowing γ > 0, and in its consideration of the effect of
decoupling while also obtaining new results for the asymptotics as T → 0.

Our treatment splits into two, somewhat disjoint, parts. As the first of these parts, we will be consid-
ering in Sections 2 and 3 the case of

• global observation of a single component, i.e., over the entire region Ω.

Since the ‘entire’ component is observed in this case, and positive results on nullcontrollability of
(1.4) with just one component are available [16,1], the situation seems quite comparable to the finite-
dimensional situation treated in [21,24]. The relevant asymptotics there – O(T−[N−1/2]) as in Theo-
rem 3.3 – suggest for this 3-component case that we should have

C(T ) ∼ T−5/2 (1.5)

as T → 0. [Indeed, if one restricts consideration to a single eigenspace, the system does become a first-
order 3-dimensional system to which the results of [21] apply so the O(T−5/2) asymptotics would then
be exact so this blowup rate is necessarily optimal.] In these sections we will independently present two
approaches:

• weighted energy estimates,
• spectral expansion – based on [21]

by which to obtain the optimal1 O(T−5/2) asymptotics for (1.2) in this case and to consider the asymp-
totics as α → 0 as well. [Rather than seeking blowup asymptotics for (1.2) as γ → 0, we will obtain a
treatment uniform in γ by using a γ-dependent norm for the estimation.]

1Optimal O(T−5/2) asymptotics with global controls (supported in the entire region Ω) dual to these global observation
problems have recently been derived in [2] for nullcontrollability of thermoelastic plates (1.2) with γ = 0 and subject to
a variety of physically relevant boundary conditions – including canonical models of simply supported, clamped and free
boundary conditions. The methods used in [2] rely on weighted energy estimates which are intrinsically nonspectral. These are
very flexible in dealing with the variety of unstructured problems which arise in noncommutative cases of the operator matrix
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For more localized observation the situation is more complicated and more difficult. In comparison
with the known results for scalar problems (see [20,8,17] for the heat equation and [13,18] for plate
and Schrödinger equations) it would seem plausible to seek results for observation on an arbitrary patch,
either within the region Ω or in the boundary ∂Ω, but our available tools at present are inadequate to ob-
tain general patch observability/nullcontrollability and related estimates2 when observation is restricted
to a single component of the system. What we are able to treat is the case of

• observation of a single component on a base of a Cartesian product region where separation of
variables then permits reduction to a family of spatially one-dimensional problems.

We will also restrict our attention here to the Euler–Bernoulli plate since one loses observabil-
ity/nullcontrollability for small T when γ �= 0. Indeed, according to Theorem 1.1.2 in [14], the principal
part of the differential operator describing the Kirkhoff plate dynamics of (w, wt) has speed of propaga-
tion γ−1/2; for the thermoelastic dynamics with γ > 0 one then expects a finite speed of propagation for
the singular support.

Comparing with the prior results obtained for scalar problems, we anticipate, for the system (1.2) with
γ = 0, the same asymptotics as for those problems: that

ln C(T ) = O(1/T ) as T → 0. (1.6)

[Again, restricting to a suitable subspace, the results of, e.g., [9,17] apply directly and we see that this
blowup rate must be optimal.] In Section 4 we will use the approach

• spectral expansion – based on [23]

to obtain those optimal exp[O(1/T )] asymptotics for our system and also to consider the asymptotics as
α → 0.

Note added in proof: The above is a severe geometric limitation, but these methods do obtain the
desired exp[O(T−1)] asymptotics as T → 0. Since acceptance of this paper we have become aware of
two forthcoming treatments of patch control in one component for this problem. We note, however, that
each obtains the asymptotics exp[O(T−β)] (β > 1).

P. Cokeley, Localized and boundary null controllability properties, and associated minimal norm asymp-
totics, of two nonstandard parabolic partial differential systems, Ph.D thesis, Univ. Nebraska, to appear.

L. Miller, On the cost of fast controls for thermoelastic plates, Asymptotic Analysis, to appear.

1.1. An abstract formulation

While our exposition will be specifically for the thermoelastic system (1.2), it will be convenient to
view this in the abstract form

U̇ = L∗ U , ϕ = B U (1.7)

L in (1.11) (clamped or free boundary conditions) or problems with controlled time variation of the coefficients in A. On the
other hand, we note that these prior analyses [2,3] did not consider the asymptotics with respect to variation of the coupling
constant α or the rotational force parameter γ.

2In the case when γ > 0, a preliminary question of just nullcontrollability of (1.4) in arbitrarily short time T > 0 with
controls restricted to a patch or a boundary has a negative answer. With γ = 0, the one prior positive nullcontrollability result
from a patch in an arbitrary short time T is for the case of thermal controls [4].
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with the state U (t) and observation ϕ(t) taking values in Hilbert spaces H, X , respectively; L∗ is the
infinitesimal generator of a C0 semigroup on H. [For the system (1.4) under our consideration here we
may consider, as convenient, the semigroup formulation, the obvious expansion using the eigenpairs of
A, or the weak formulation of the system.]

Of course, our interest here is in nonscalar systems for which H is a product space and L∗ has a
corresponding block matrix structure3 with the observation operator B involving only one of the com-
ponents of H. We then refer to U (t) as the “full state” with B involving the “observed state component.”
A new consideration here is that the block matrix structure of L∗ may involve a coupling parameter α
– decoupling the observed state component from others when α = 0 – and we are also interested in
the asymptotics as α → 0, for which we will also have blowup. The observation estimates (1.1) under
consideration have here the form∥∥U (T )

∥∥
H � C‖ϕ‖L2([0,T ]→X ), (1.8)

where L2([0, T ] → X ) is the Hilbert space of X -valued functions on [0, T ] with the obvious inner
product and norm; note that C is just (a bound on) the norm of the operator:

ϕ �→ U (T ) : L2([0, T ] → X
)
→ H.

We will be considering situations in which we have a parametrized family of such problems – if nothing
else, the observation time T is already a significant parameter, but the operator L∗ may also vary para-
metrically – and we are interested in the asymptotics of the dependence of the estimation constant C in
(1.8) on the parameters of the problem.

There are many ways of putting our particular system (1.2) in the first-order form of (1.7). We choose
to take the state to consist of the three components θ, u = Aw, and v = M1/2wt, corresponding to the
natural energy

E =
1
2

∥∥M1/2wt

∥∥2 +
1
2
‖Aw‖2 +

1
2
‖θ‖2 =

1
2

[
‖u‖2 + ‖v‖2 + ‖θ‖2]. (1.9)

[For future reference we note that

E(t) = E(s) −
∫ t

s
〈θ, Aθ〉 dt̂ for s � t, (1.10)

i.e., dissipation at the rate 〈θ, Aθ〉.] Thus, introducing the 3 × 3 operator matrix L, the system (1.4)
becomes

U̇ = LA U with

U =


 θ

u
v


 =


 θ

Aw

M1/2wt


 and

L =


 −1 0 αM−1/2

0 0 M−1/2

−αM−1/2 −M−1/2 0




(1.11)

3It is significant for us that the ‘blocks’ of L∗ are commuting operators for (1.2).
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so L∗ = LA. Our desired observation inequality then takes the form

2E(T ) � C2‖ϕ‖2
L2([0,T ]→X ) (1.12)

for solutions of (1.4), where, recalling (1.7), ϕ = BU . The constant C is, of course, to be independent
of the particular solution, but will necessarily depend on the particular construction of U , the choice of
observation ϕ, and on Ω, A and the various parameters: in particular, we are considering asymptotics in
T , α for C = C(T ; α).

Notation. Henceforth we will let 〈·, ·〉 denote both the scalar product on L2(Ω) and, without confusion,
the scalar product on H = L2(Ω → R

3); similarly, | · | is both the absolute value in R or C and the usual
Euclidean norm of R

N while ‖ · ‖, without any subscript, denotes the norms of L2(Ω) and of H as well
as matrix and operator norms; where needed, we write ‖ · ‖Q for the norm of L2(QT ) = L2([0, T ] →
L2(Ω)), etc., so, e.g., ‖f‖2

Q =
∫ T

0 ‖f‖2 dt with ‖ϕ‖ the L2(Ω)-norm.

2. Global observation: weighted energy

As noted above, we are considering the linear thermoelastic system (1.2)

[1 − γ∆]wtt + ∆2w − α∆θ = 0,
θt − ∆θ + α∆wt = 0

on QT = (0, T ) × Ω with Ω ⊂ R
n bounded and with α > 0; the constant γ � 0 represents effects of

rotational forces. Although the dimensionality is not significant for this analysis, we may think of n = 2
so the first equation here becomes a standard (Kirkhoff) plate equation on decoupling the system; an
Euler–Bernoulli plate when γ = 0. We are imposing the simply supported boundary conditions of (1.2):

w = 0, ∆w = 0, θ = 0 on Σ = [0, T ] × ∂Ω. (2.1)

The abstract version of this thermoelastic system (1.2), (2.1) is (1.4) with (1.3) and M = Mγ = 1 + γA.
The traditional state for (1.2) is

(w, wt, θ) ∈ H∗ ≡
[
H2(Ω) ∩ H1

0 (Ω)
]
× H1

γ(Ω) × L2(Ω),

where H1
γ(Ω) = {z: M1/2z ∈ L2(Ω)}. As noted, it will be more convenient, however, for us to take the

state as U = (θ, u, v) ≡ (θ, Aw, M1/2wt) in H = [L2(Ω)]3 with the energy norm

‖U‖2
H = ‖U‖2 = ‖θ‖2 + ‖Aw‖2 +

∥∥M1/2wt

∥∥2
(2.2)

recalling (1.9). It is well known [15] that the C0 contraction semigroup on H generated by the system
(1.2), (2.1) is analytic when γ = 0; in this case we have U (t) ∈ D×D×D for t > 0. We also note from
(1.10) that one has the energy identity:

∥∥U (s)
∥∥2 + 2

∫ s

t

∥∥∇θ(r)
∥∥2

dr =
∥∥U (t)

∥∥2
for 0 � t � s. (2.3)
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Recall that we are considering ‖U (T )‖H � C‖ϕ‖ and, comparing with (1.5), for this 3-component
system, we expect C = C(T ; α) ∼ T−5/2 as T → 0 with α > 0 fixed for this global observation.

Our principal result for this section is then the following:

Theorem 2.1. Let 0 < T � T0, γ � 0 and 0 < α. In each of the cases: [ϕ = M1/2θ] or [ϕ =
Mu = MAw] or [ϕ = M1/2v = Mwt], it is possible to observe the indicated state component ϕ and
from this to determine all the components of the full state (w, wt, θ) at the final time T for the linear
thermoelastic system (1.2). The linear operator: ϕ �→ U (T ) = (θ, u, v)|t=T is continuous from L2(QT )
to H = (L2(Ω))3 for each of the cases:

• Thermal observation (ϕ = M1/2θ) or
• Displacement observation (ϕ = Mu = MAw, corresponding to observation with w topologized in

L2([0, T ] → H2(Ω))) or
• Velocity observation (ϕ = M1/2v = Mwt).

One further has bounds for the operator norms C = Cθ,u,v = C(T ; α), see (1.8),

Cθ � Ψθ

(
αT−1/2 + α−1T−5/2),

Cu � Ψu

(
αT−1/2 + α−1T−5/2),

Cv � Ψv
(
α2T−1/2 +

(
1 + α−1)T−5/2),

(2.4)

where each constant c and Ψθ,u,v is to be independent of T , α over the range (0, T0]× (0,∞) – although
necessarily dependent on T0 and A.

Note that, while our estimates in (2.4) are, in each case, also independent of 0 � γ � γ̄, the interpre-
tation varies significantly since the norms involved are γ-dependent: the second component of the space
H∗ is just L2(Ω) when γ = 0, but immediately becomes H1

0 (Ω) when we take γ at all positive. Similar
comments apply to the choices of topology for the observations (e.g., observing M1/2θ in L2(QT ) rather
than θ ∈ L2(QT )), but one should also note that these are entirely relative: since M−1/2U (·) also satisfies
the same system, we could, e.g., observe θ ∈ L2(QT ) to determine wt(T ) ∈ L2(Ω).

We emphasize again that our primary interest here is with the asymptotics presented in (2.4), rather
than with mere existence and continuity of each map: ϕ �→ (θ, w, wt)|t=T for (arbitrary) fixed T , α > 0.

Remark 2.2. We remark that (2.4) matches (1.5) and (3.1) as T → 0 for fixed α > 0, but here gives
more information as T and α vary jointly. E.g., for thermal observation or displacement observation,
if we could arrange that α ∼ T−1 as T → 0, we would then have the slower asymptotic blowup:
Cθ = O(T−3/2).

2.1. Some identities

To prepare for the proof of Theorem 2.1 we introduce some notation and identities. Using a positive
C2 weight function h = h(t) with h = 0 = ḣ at 0, T , we define

〈f , g〉h :=
∫ T

0
h(t)〈f , g〉 dt, ‖f‖2

h := 〈f , f〉h =
∫ T

0
h(t) ‖f‖2 dt (2.5)



100 I. Lasiecka and T.I. Seidman / Blowup estimates for observability of a thermoelastic system

for f , g in L2(QT ). Using the self-adjoint positive operator M = Mγ = 1 + γA on L2(Ω), we recall that
with v = M1/2wt we have

〈u, v〉h ≡
〈
M1/2u, wt

〉
h, ‖v‖h ≡

∥∥M1/2wt

∥∥
h. (2.6)

As usual, we then have |〈f , g〉h| � ‖f‖h‖g‖h � ε‖g‖2
h + (1/4ε)‖f‖2

h. Writing 〈ḣf , g〉 =
〈
√

εhf , (ḣ/2
√

εh)g〉, we have

∣∣∣∣c
∫ T

0
ḣ〈f , g〉 dt

∣∣∣∣ � ε‖f‖2
h +

(
c2

4ε

∥∥ḣ2/h
∥∥

L∞(0,T )

)
‖g‖2

Q (2.7)

and similarly for integrals with ḧ. There are no boundary terms in integration by parts so, for suitably
t-differentiable f , g, one has

〈ḟ , g〉h = −〈f , ġ〉h −
∫ T

0
ḣ〈f , g〉 dt,

∫ T

0
ḣ〈ḟ , g〉 dt = −

∫ T

0
ḣ〈f , ġ〉 dt −

∫ T

0
ḧ〈f , g〉 dt.

(2.8)

It will be convenient to take h(t) = η(t/T ) on [0, T ] where η(·) is a C2 positive function on [0, 1] with
η = η′ = 0 at 0, 1 and

∫ 1
0 η(s) ds = 1; we further assume that (η′)2/η and (η′′)2/η are each in L∞(0, 1).

[One example is η(s) = 280
57 (s − s2)4.] For such h we have

0 < ‖h‖L∞(0,T ) = ‖η‖L∞(0,1) with h|0,T = 0,
∫ T

0
h(t) dt = T

and

∥∥ḣ2/h
∥∥

L∞(0,T ) = T−2∥∥(η′)2/η
∥∥

L∞(0,1),∥∥ḧ2/h
∥∥

L∞(0,T ) = T−4∥∥(η′′)2/η
∥∥

L∞(0,1).

(2.9)

We also note that this gives ‖f‖2
h � ‖η‖L∞(0,1)‖f‖2

Q.

Lemma 2.3. Let U = (θ, u, v) = (θ, Aw, M1/2wt) ∈ C([0, T ] → H) be a solution of (1.11), which we
consider in the form

A−1θ̇ = −θ + αM−1/2v, A−1u̇ = M−1/2v, M1/2A−1v̇ = −αθ − u, (2.10)

so
θ = −α−1(u + A−1M1/2v̇

)
= αM−1/2v − A−1θ̇,

u = −αθ − M1/2A−1v̇,
v = A−1M1/2u̇ = α−1 M1/2(θ + A−1θ̇

)
.

(2.11)

Then one has the identities:

‖u‖2
h = ‖v‖2

h − α〈θ, u〉h +
∫ T

0
ḣ
〈
M1/2A−1u, v

〉
dt,

(2.12)

‖v‖2
h = ‖θ‖2

h + α−1
[
〈θ, u〉h + 〈M1/2θ, v〉h −

∫ T

0
ḣ
〈
M1/2A−1θ, v

〉
dt

]
,
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‖θ‖2
h + ‖v‖2

h =
(
α + α−1)〈θ, M−1/2v〉h + α−1〈M1/2v, θ

〉
h

+
1
2

∫ T

0
ḣ

〈
v, A−1v

〉
dt − 2α−1

∫ T

0
ḣ 〈M1/2A−1θ, v〉 dt

+ α−1
∫ T

0
ḧ 〈M1/2A−1θ, A−1v〉 dt, (2.13)

∫ T

0
ḣ

〈
M1/2A−1u, v

〉
dt = α−1

[∫ T

0
ḣ

〈
MA−1u, θ

〉
dt −

∫ T

0
ḣ

〈
v, M1/2A−1θ

〉
dt

−
∫ T

0
ḧ

〈
MA−1u, A−1θ

〉
dt

]
,

∫ T

0
ḣ

〈
M1/2A−1θ, v

〉
dt =

∫ T

0
ḣ

〈
MA−1θ, u

〉
dt − α

∫ T

0
ḣ

〈
M1/2A−1v, u

〉
dt (2.14)

−
∫ T

0
ḧ

〈
MA−1θ, A−1u

〉
dt,

〈M1/2θ, v〉h =
〈
Mθ, u

〉
h − α

〈
M1/2u, v

〉
h −

∫ T

0
ḣ

〈
MA−1θ, u

〉
dt.

Proof. First we notice that finite energy solutions U (t) = (θ(t), u(t), v(t)) ∈ H = L2(Ω) × L2(Ω) ×
L2(Ω) lead to equations in (1.11) that are defined with values in L2(Ω). Note also that when our compu-
tations are performed with γ > 0 we have D(Mγ) = D(A) and both operators are self-adjoint on L2(Ω);
one sees immediately4 that

MA−1 and M1/2A−1/2 are bounded on L2(Ω)

and, indeed, this boundedness is uniform in γ for bounded γ � 0.
As a consequence, the following regularity of higher time derivatives of weak solutions θ, w, vt follows

directly from (1.4), interpreted as in (2.10):

A−1θ̇ ∈ C
(
[0, T ] → L2(Ω)

)
,

A−1u̇ ∈ C
(
[0, T ] → D

(
M1/2

))
,

M1/2A−1v̇ ∈ C
(
[0, T ] → L2(Ω)

)
,

A−2M1/2v̈ ∈ C
(
[0, T ] → L2(Ω)

)
.

(2.15)

Thus, all the calculations performed below involve L2(Ω) inner products of L2(Ω) functions and so are
well defined and justified.

To see (2.12), first consider the weighted scalar product of v with v = A−1M1/2u̇ from (2.11), apply
(2.8), and substitute −M1/2A−1v̇ = αθ + u from (2.10); with a bit of re-arrangement, this is the first

4We owe this to the fact that we are considering simply supported boundary conditions so the operators M and A (along
with their fractional powers) commute. This need not be the case if one were to consider other (clamped or free) mechanical
boundary conditions for the plate.
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identity of (2.12). Similarly, taking the weighted product of v with v = M1/2α−1(θ + A−1θ̇) leads to the
second identity.

For (2.13), we first differentiate A−1M1/2v̇ = −u − αθ, apply A−1 and use (2.10) to get the identity
θ = (α + α−1)M1/2v + α−1M1/2A−2v̈ so, taking the weighted product of θ with this,

‖θ‖2
h =

(
α + α−1)〈M1/2v, θ

〉
h + α−1〈M1/2A−2v̈, θ

〉
h. (2.16)

The contribution of the second term on the right of (2.16) gives

α−1〈M1/2A−2v̈, θ
〉
h = −α−1〈M1/2A−1v̇,−A−1θ̇

〉
h − α−1

∫ T

0
ḣ
〈
M1/2A−1v̇, A−1θ

〉
dt.

Substitute [−θ + αM−1/2v] for A−1θ̇ and use the identity

〈
v, A−1v̇

〉
h = −1

2

∫ T

0
ḣ

〈
v, A−1v

〉
dt,

obtained by integration by parts, to get

α−1〈M1/2A−2v̈, θ
〉
h = −1

2

∫ T

0
ḣ
〈
A−1v, v

〉
dt − α−1〈v, M1/2A−1θ̇

〉
h

− α−1
∫ T

0
ḣ
〈
v, M1/2A−1θ − M1/2A−2θ̇

〉
dt

+ α−1
∫ T

0
ḧ
〈
v, M1/2A−2θ

〉
dt

again substitute [−θ + αM−1/2v] for A−1θ̇

= −1
2

∫ T

0
ḣ
〈
A−1v, v

〉
dt + α−1〈M1/2v, θ

〉
h − ‖v‖2

h

− α−1
∫ T

0
ḣ
〈
v, 2M1/2A−1θ − αA−1v

〉
dt

+ α−1
∫ T

0
ḧ
〈
v, M1/2A−2θ

〉
dt.

Collecting terms and going back to (2.16), we now obtain (2.13).
Finally, for the first identity of (2.14), first substitute α−1(θ+A−1θ̇) for M−1/2v on the left, apply (2.8)

to the second part of this, and then use A−1u̇ = M−1/2v. For the second, substitute A−1u̇ for M−1/2v on
the left, again apply (2.8), and then use A−1θ̇ = −θ + αM−1/2v. Last, by taking the weighted product
of θ with v = M1/2A−1u̇, we obtain the third of these identities. �

2.2. Proof of Theorem 2.1

With γ � 0, the energy identity (2.3) gives ‖U (T )‖ � ‖U (t)‖ for 0 � t � T , where we recall

∥∥U (t)
∥∥2 ≡

∥∥u(t)
∥∥2 +

∥∥M1/2wt(t)
∥∥2 +

∥∥θ(t)
∥∥2

.
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Hence, taking h as above,

T
∥∥U (T )

∥∥2 =
∫ T

0
h(t)

∥∥U (T )
∥∥2

dt �
∫ T

0
h(t)

∥∥U (t)
∥∥2

dt ≡
∥∥U (·)

∥∥2
h

so:

If
∥∥U (·)

∥∥2
h � ψ(T , α) ‖ϕ‖2

Q, then C(T ; α) �
√

ψ/T . (2.17)

In each of our cases we will be able to use Lemma 2.3 to obtain a form for ‖U‖2
h which can be suitably

estimated in terms of ‖ϕ‖2
Q so (2.17) will give (2.4).

Thermal observation: ϕ = M1/2θ

We begin by using (2.12) and then substituting the first identity of (2.14) to get the combined identity:

‖U‖2
h = ‖θ‖2

h + ‖u‖2
h + ‖v‖2

h

= 3‖θ‖2
h +

[
2α−1 − α

]
〈θ, u〉h + 2α−1〈M1/2θ, v

〉
h

− α−1
[
−

∫ T

0
ḣ

〈
MA−1θ, u

〉
dt + 3

∫ T

0
ḣ

〈
M1/2A−1θ, v

〉
dt

+
∫ T

0
ḧ

〈
MA−1θ, A−1u

〉
dt

]
(2.18)

in which we have ensured that all terms on the right involve θ – note that we have freely used the
symmetry of the product and the self-adjointness of A−1, M along with commutativity of A and M in
obtaining (2.18). We can now estimate each of these six terms in turn, using the Cauchy inequality, (2.7),
and the fact that MA−1 is bounded for each γ, etc. Noting (2.9) – and then absorbing in c = cε, below,
such assorted constants as ‖A−1‖ = 1/ζ0 and ‖MA−1‖ – we obtain, term by term,

‖U‖2
h � c

[
1 +

(
α−2 + α2) + α−2 + α−2T−2 + α−2T−4]‖θ‖2

Q

+ cα−2∥∥M1/2θ
∥∥2

h + ε
[
‖u‖2

h + ‖v‖2
h

]
. (2.19)

Observe that ‖θ‖ � ‖M1/2θ‖.
We can then choose ε = 1/2 here to absorb those terms into the left and obtain (2.17) for ϕ = M1/2θ

– with (re-adjusting c slightly)

ψ = ψθ(T , α) � c
[(

α2 + 1 + α−2) + α−2T−2 + α−2T−4].
Note that this estimate is uniform in γ for γ � 0 bounded.

With a further re-adjustment of the constant, we may omit dominated terms before taking the square
root of ψ/T term by term. Of the five terms here, ‘1’ is uniformly dominated by [α2 + α−2] so that term
can be dropped; the terms α−2 and α−2T−2 are each dominated by α−2T−4 for 0 < T � T0, so those
can also be dropped. Thus (2.17) gives the estimate asserted for Cθ in (2.4).
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Remark 2.4. In the case of thermal control and positive γ, we note that the estimate just obtained for
global observation of θ yields exact controllability rather than only nullcontrollability (valid with γ = 0).
Indeed, from the energy identity (2.3) we have

∥∥U (0)
∥∥2=

∥∥U (T )
∥∥2 + 2

∫ T

0

∥∥∇θ
∥∥2

dt � T−1[ψθ(T , α) + 2
]
‖ϕ‖Q.

This is consistent with the basic parabolic theory where internal controls in L2([0, T ] → H−1(Ω)) yield
exact controllability for the heat equation: the dual formulation of this corresponds to observing ‖A1/2θ‖.

Displacement observation: ϕ = Mu = MAw

Here we want an identity for ‖U‖h in which each term on the right now involves u:

‖U‖2
h = 3‖u‖2

h +
[
2α − α−1]〈θ, u〉h +

〈
M1/2v, u

〉
h

+ 2α−1
∫ T

0
ḣ

〈
MA−1θ, u

〉
dt − 3

∫ T

0
ḣ
〈
M1/2A−1u, v

〉
dt

− α−1
∫ T

0
ḧ
〈
MA−1θ, A−1u

〉
dt. (2.20)

We get this by starting with the identities (2.12)

‖θ‖2
h + ‖v‖2

h = 2‖v‖2
h − α−1

[
〈θ, u〉h +

〈
M1/2θ, v

〉
h −

∫ T

0
ḣ
〈
M1/2A−1θ, v

〉
dt

]

= 2‖u‖2
h + 2α〈θ, u〉h − 2

∫ T

0
ḣ
〈
M1/2A−1u, v

〉
dt

−α−1
[
〈θ, u〉h +

〈
M1/2θ, v

〉
h −

∫ T

0
ḣ
〈
M1/2A−1θ, v

〉
dt

]
= 2‖u‖2

h +
(
2α − α−1)〈θ, u〉h − α−1〈M1/2θ, v

〉
h

− 2
∫ T

0
ḣ
〈
M1/2A−1u, v

〉
dt + α−1

∫ T

0
ḣ
〈
M1/2A−1θ, v

〉
dt

from which we obtain

‖U‖2
h = 3‖u‖2

h +
(
2α − α−1)〈θ, u〉h + α−1〈M1/2θ, v

〉
h

− 2
∫ T

0
ḣ
〈
M1/2A−1u, v

〉
dt + α−1

∫ T

0
ḣ
〈
M1/2A−1θ, v

〉
dt.

The terms 〈M1/2θ, v〉h and
∫ T

0 ḣ〈M1/2A−1u, v〉 dt are replaced by the quantities on the right-hand sides
of the last two identities in (2.14) to give
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‖U‖2
h = 3‖u‖2

h +
(
2α − α−1)〈θ, u〉h

− α−1
[〈

θ, Mu
〉
h − α

〈
u, M1/2v

〉
h −

∫ T

0
ḣ

〈
MA−1θ, u

〉
dt

]

− 2
∫ T

0
ḣ
〈
M1/2A−1u, v

〉
dt

+ α−1
[∫ T

0
ḣ
〈
MA−1θ, u

〉
dt − α

∫ T

0
ḣ
〈
M1/2A−1v, u

〉
dt −

∫ T

0
ḧ
〈
MA−1θ, A−1u

〉
dt

]

and we then get (2.20) on collecting terms.
As before, we now estimate each of the 6 terms of (2.20) in turn to get

‖U‖2
h � c

[
1 +

(
α − α−1)2 +

(
α−2 + 1

)
T−2 + α−2T−4]‖u‖2

Q

+ cα−2∥∥Mu
∥∥2 + c

∥∥M1/2u
∥∥2 + ε

[
‖θ‖2

h + ‖v‖2
h

]
(2.21)

which, after dropping dominated terms, gives (2.17) for ϕ = Mu = MAw with

ψ(T , α) � c
[
α2 + α−2T−4]

uniformly in 0 � γ � γ̄. Exactly as for Cθ, we now get the estimate asserted for Cu in (2.4).
[We remark that, in the case of displacement observation, we have required a much stronger obser-

vation operator, necessary in order to reconstruct the thermal variable θ. If, however, one were just
interested in partial observability (without a need to reconstruct θ), the same techniques give the desired
estimate with observation only of ‖u‖.]

Velocity observation: ϕ = Mwt

For this case it is convenient to proceed in two steps. We already have (2.13) and now estimate that
term by term on the right to obtain

‖θ‖2
h + ‖v‖2

h � c
[(

α2 + α−2) + T−2 + α−2T−2 + α−2T−4] ‖v‖2
h + cα−2∥∥M1/2v

∥∥2
h + ε‖θ‖2

h

so after setting ε = 1/2 and dropping dominated terms we get

‖θ‖2
h � c

[
α2 + T−2 + α−2T−4]‖v‖2

h + cα−2∥∥M1/2v
∥∥2

h. (2.22)

We can then use the first identity of (2.12) to get

‖u‖2
h � c

([
1 + T−2]‖v‖2

h + α2‖θ‖2
h

)
+ ε‖u‖2

h + cα−2∥∥M1/2v
∥∥2

h

� c
[
1 + T−2 + α2(α2 + T−2 + α−2T−4)]∥∥M1/2v

∥∥2
h + cα−2∥∥Mwt

∥∥2
h + ε‖θ‖2

h (2.23)

using (2.22). Adding (2.22) and (2.23), then dropping dominated terms, we get (2.17) for ϕ = Mwt with

ψ(T , α) � c
[
α4 +

(
1 + α−2)T−4]
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uniformly in 0 � γ � γ̄. As for the previous cases, we now compute
√

ψ/T to get the estimate for Cv

asserted in (2.4).
[Again we remark that when velocity is observed and γ > 0, the observation requires two additional

derivatives (or one additional as compared with the finite energy space). However, if one seeks partial
observation only, then this approach gives the same estimate when only observing ‖M1/2wt‖.] �

We may remark here that in the Euler–Bernoulli case (γ = 0) all three of the observed quantities
θ, Aw, wt are measured in the L2(Ω) topology while in the Kirkhoff case the situation is not symmet-
ric: the observed quantities are then θ ∈ H1(Ω), but Aw, wt ∈ H2(Ω). This difference of topology
between the mechanical and thermal observed variables disappears if one is willing to compromise the
full reconstruction of the state and accept partial observability, i.e., observability of only the mechanical
part. In that case observation of each of the three variables can be considered in the H1(Ω)-norm. It is
the reconstruction of the parabolic component from the hyperbolic part of the system which costs an
additional derivative.

3. Global observation: spectral expansion

In this section we continue to consider (1.4) – the same system (1.2), (2.1) as in Section 2 – and will
obtain results quite similar to those of Section 2 by the use of a rather different approach: spectral ex-
pansion to reduce each problem to the consideration of a family of finite-dimensional problems to which
we can apply the general finite-dimensional results taken as Theorem 3.3 from [21] in Subsection 3.1
below. We are assuming here that A is self-adjoint and positive definite with D(A) ∼ H2(Ω), but it is
otherwise irrelevant to have A as in (1.3). In this section we again seek a unified theory, necessarily ac-
commodating the possibility that γ > 0, and defer some special consideration of the nonrotational case
γ = 0 to later. A major point here is that being able to cite general results both simplifies the arguments
considerably and clarifies the structure of the problem.

The principal result we obtain in this section is:

Theorem 3.1. We consider the linear thermoelastic system (1.4) – in particular, (1.2), (2.1). For every
α > 0 and every T > 0 it is possible to observe any single state component on QT and determine the full
state (w, wt, θ) on Ω at the final time T , equivalently U (T ) = (θ, u, v). The linear operator: ϕ �→ U (T )
is continuous from L2(QT ) to H = (L2(Ω))3 with norm C = C(T ; α) as in (3.3) for each of the cases

• Thermal observation (ϕ = M1/2θ so b0 = [1 0 0] in (3.13)) or
• Displacement observation (ϕ = Mu = MAw, corresponding to observation with w topologized in

L2([0, T ] → H4(Ω)) if γ > 0) or
• Velocity observation (ϕ = M1/2v = Mwt),

and this operator norm has the asymptotics of (1.5) – more precisely,∥∥U (T )
∥∥
H =

∥∥U (T )
∥∥ � Kα−1 T−5/2

∥∥M1/2θ
∥∥

L2(Q),∥∥U (T )
∥∥
H =

∥∥U (T )
∥∥ � Kα−1 T−5/2‖MAw‖L2(Q),∥∥U (T )

∥∥
H =

∥∥U (T )
∥∥ � K

√
1+α2

α T−5/2 ‖Mwt‖L2(Q)

(3.1)

for 0 < T < τ∗. Here K is independent of T , α, γ – and, of course, is independent of the particular
U (·) ≡ (θ(·), Aw(·), M1/2wt(·)) satisfying (1.4) – but τ∗ > 0 may depend on α if α → 0,∞, although it
is independent of γ.
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Remark 3.2. The estimated asymptotics (3.1) are, of course, entirely consistent with those of (2.4), but
must be interpreted somewhat differently: we emphasize that, because of its reliance on [21], our result
here can only be the existence of an iterated limit – e.g., existence of

lim
α→∞

α
[

lim
T→0

T 5/2C(T ; α)
]

(3.2)

for thermal observation – and, in view of the α-dependence of τ∗ for (3.1), asserts nothing about situa-
tions in which simultaneously T → 0 and α → ∞ in some joint fashion. This seems the best one might
expect based on the results given in [21]. While more detailed extension of those results might permit us
to obtain by this method the consideration of Theorem 2.1 for limits joint in α, T , we confine ourselves
to following the available general results, hence looking at the asymptotics as T → 0 and then obtaining
the asymptotics

C(T ; α) = O
(
α−1)O(

T−5/2) as T → 0 (3.3)

as α → 0, etc., interpreting (3.1) in the sense of (3.2).

[An interesting variant here would be to consider the simultaneous observation of two of these vari-
ables, e.g., determining the velocity v = wt from observation of both temperature and displacement so
ϕ = (θ, u) = (θ, Aw). This vectorial observation could be treated using more general results in [21], but
not through the version presented here as Theorem 3.3.]

3.1. A general finite-dimensional result

In this subsection we note a general result for abstract finite-dimensional systems which will then be
applied to the thermoelastic system. This result is adapted from the principal result of [21], specialized
to consider scalar observation as the form needed for our present purposes. For details and more general
results of this nature, see [21,24].

Theorem 3.3. Let b0 be an arbitrary (row) vector in R
N and let L be an N × N matrix such that

{b0, b0L, . . . , b0L
N−1} is linearly independent. Then, for every solution of

ẋ = Lx with observation of ϕ = b0 · x(·) (3.4)

we have

∣∣x(T )
∣∣ � C‖ϕ‖L2(0,T ) = C

[∫ T

0
|b0 · x|2 dt

]1/2

(3.5)

with the asymptotics for C = C(T ) = C(T ; L, b0) as T → 0 given by

lim
T→0

TN−1/2C(T ; L, b0) = ψ =
cN

β∗
with β∗ = |b∗|, (3.6)

where

b∗ = projection of b0L
N−1 onto

[
span

{
b0, . . . , b0L

N−2}]⊥
. (3.7)
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Clearly, given r > 1 there is some τ = τ (r) > 0 such that

C(T ; L, b0) � rψT−N+1/2 for 0 < T � τ (3.8)

with ψ = cN/β∗ as in (3.6). We note here that one can take τ uniform as L varies over any compact set
M of admissible matrices, i.e., such that {b0, . . . , b0L

N−1} remains linearly independent.

[We remark that the constant cN in (3.6) depends only on the dimension N ; thus, having β∗ = |b∗| as
in (3.7) provides the only dependence of ψ in (3.6), (3.8) on the matrix L or on the observation vector b0.
Note that for the thermoelastic example (1.4) we have N = 3 so for each of the finite-dimensional
problems of (3.15) the blowup rate is T−N+1/2 = T−5/2.]

Proof. The discussions in [21] and [24] actually obtain the first term in an asymptotic expansion for the
minimum norm of a control from 0 to a target state ξ and this is here adapted to the nullcontrol problem
(ξ0 �→ 0) dual to the present observation problem by setting ξ = −eTLξ0. Analysis shows that one is
essentially estimating ‖Q−1

T ‖1/2 where QT =
∫ T

0 [y(t) ⊗ y∗(t)] dt is the nullcontrollability operator for
ẏ = −L∗y, y(0) = b0

∗. With this ‘translation’, (3.5) and (3.6) follow directly from [21]. The uniformity
of τ with respect to L ∈ M for the inequality (3.8) is immediate from (3.6) once one looks carefully at
the argument in [21] to observe that all steps in estimating TN−1/2|x(T )| are continuous in T , L, subject
to the independence assumption on {b0, . . . , b0L

N−1}. �

We note here some related facts, but will only prove what is actually needed as it is needed.

Lemma 3.4. Assume the hypotheses of Theorem 3.3. Then one has

(1) C(T ; L, λb0) = C(T ; L, b0)/λ,

(2) C(T ; λL, b0) =
√

λC(λT ; L, b0),

(3) C(T ; L, b0) �
∥∥A−1

∥∥ C
(
T ; ALA−1, b0A

−1
)
,

(4) if
∥∥etL

∥∥ � b for all t > 0, then

C(nT ; L, b0) � bC(T ; L, b0)/
√

n;

(5) if
∥∥etL

∥∥ � b e−ωt with ω > 0, for all t > 0, then

C(2nT ; L, b0) � b e−ωnT C(T ; L, b0)/
√

n.

3.2. The family of finite-dimensional problems

Our problem is to estimate U (T ) in terms of observation of a single component – suitably topologized
by the introduction of an observation operator S = σ(A) so ϕ = b0·SU (·) – for 0 < t < T . To reduce this
to a family of finite-dimensional problems, we begin by considering the set {(ζm, gm): m = 0, 1, . . .}
of eigenpairs of A, taking the eigenvalues as ordered so 0 < ζ0 � ζ1 � · · · → ∞ and taking the
eigenfunctions {gm} to be orthonormal in L2(Ω). We then expand the solution to get

U (t; x) =
∑
m

Um(t)gm(x) (3.9)
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with (R3-valued) coefficients: Um = 〈U , gm〉 =
∫
Ω U (·, x)gm(x) dx; since Agm = ζmgm, it follows

from (1.4) that each Um satisfies

dUm/dt = ζmLUm, where Lgm = Lgm. (3.10)

An important observation is that (1.10) and our choice of state vector U = (θ, Aw, M1/2wt) give

∥∥U (t)
∥∥ �

∥∥U (s)
∥∥,

∣∣Um(t)
∣∣ �

∣∣Um(s)
∣∣ for s � t. (3.11)

Noting that µ = µm = 1 + γζm is the eigenvalue of M corresponding to gm, (3.10) gives (compare
[5])

L = Lµ =


 −1 0 α/

√
µ

0 0 1/
√

µ
−α/

√
µ −1/

√
µ 0


 . (3.12)

In each case, the observation ϕ will be restricted to one component (thermal, mechanical displacement,
or velocity):

ϕ = b0 · SU (t)
with b0 = [1 0 0] or [0 1 0] or [0 0 1]
to select θ or u = Aw or v = M1/2wt.

(3.13)

Expanding the observation similarly gives

ϕ(t, x) = b0 · S U (t, x) =
∑
m

σmϕm(t) gm(x) for x ∈ Ω (3.14)

with scalar coefficients: ϕm(t) = b0 · Um(t); here σm = σ(ζm) is the eigenvalue of the observation
operator S for the eigenvector gm. The orthonormality of {gm} then gives

∥∥U (T )
∥∥2
H =

∥∥U (T )
∥∥2 =

∑
m

∥∥Um(T )
∥∥2

,
∥∥ϕ(·)

∥∥2 =
∑
m

σ2
m‖ϕm‖2

L2(0,T ), (3.15)

where we are using, e.g., the H-norm for U (t) but the Euclidean norm on R3 for each Um(t). Thus, we
have reduced the problem to a decoupled family of 3-dimensional problems, each as considered in Theo-
rem 3.3: our task now is to obtain observation inequalities for each Um in terms of the corresponding ϕm,
proving for each of these problems that

∣∣Um(T )
∣∣ � C∗ σm‖ϕm‖L2(0,T ) (3.16)

with C∗ independent of m to get ‖U (T )‖ � C∗‖ϕ‖, as desired.
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3.3. Proof of Theorem 3.1

Proof. We wish to apply (3.8) of Theorem 3.3 to get the observation estimate (3.16) for each m, i.e., for
solutions Um of (3.10), so C∗ = T−N+1/2ψ (ψ = ψ(α) independent of m). This uniform estimate then
gives U (T ) � T−N+1/2ψ(α)‖ϕ‖ from (3.15) as desired. The difficulty is the uniformity: unfortunately,
(except for the special case γ = 0) we have 1 + γζm → ∞ so the closure M = {Lµ: µ = µm} is
compact, but fails the independence requirement as µm → ∞ to give 1/

√
µ = 0.

To obtain the desired uniformity we re-scale the components, e.g., keeping θ but making replacements
u ←� κu and v ←� νv. Thus we set

D =


1 0 0

0 κ 0
0 0 ν


 and L̂ =


 −1 0 α/ν

√
µ

0 0 κ/ν
√

µ
−αν/

√
µ −ν/κ

√
µ 0


 , (3.17)

i.e., L̂ = DLD−1. We then let x(s) = xm(s) = DUm(t) with s = ζt so

dx/ds = L̂x, b0 · Um(t) =
[
b0D

−1] · x(s) = ρ b0 · x(s),

noting that b0D
−1 = ρb0 where ρ is 1 or 1/κ or 1/ν, depending on our selection of b0. [Note that

ζ, µ, L̂, κ, ν, D, ρ, σ all have (suppressed) subscriptsm throughout this proof as we proceed with the
decoupled sequence of finite-dimensional problems.]

Now, for any n = 1, 2, . . . and k = 1, . . . , n, we recall (3.11) and have

∣∣Um(T )
∣∣ �

∣∣∣∣Um

(
k

n
T

)∣∣∣∣ =
∣∣∣∣D−1x

(
k
ζT

n

)∣∣∣∣ �
∥∥D−1∥∥∣∣∣∣x

(
k
ζT

n

)∣∣∣∣
�

∥∥D−1∥∥C

(
ζT

n
; L̂, b0

)[∫ kζT/n

(k−1)ζT/n

[
b0 · x(s)

]2
ds

]1/2

(3.18)

so, summing over k = 1, . . . , n and changing variables,

n
∣∣Um(T )

∣∣2 �
∥∥D−1∥∥2

C2
(

ζT

n
; L̂, b0

) ∫ ζT

0

[
b0 · x(s)

]2
ds

=
∥∥D−1∥∥2

C2
(

ζT

n
; L̂, b0

)
ζ

ρ2

∫ T

0

[
b0 · Um(t)

]2
dt. (3.19)

We always have ζ = ζm � ζ0 so, once we will have a suitable M to apply (3.8), we can then choose
n so n � ζ/ζ0 � 2n and will have ζT/n � τ whenever T < τ∗ on setting τ∗ = τ/2ζ0 (independent
of m). Using (3.8) for (3.19), we then have

∣∣Um(T )
∣∣ � ‖D−1‖

ρ

√
ζ

n
C

(
ζT

n
; L̂, b0

)
‖ϕm‖L2(0,T )

� ‖D−1‖
ρ

√
ζ

n
r

c3

β∗

(
ζT

n

)−5/2

‖ϕm‖
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� rc3

ζ2
0

(‖D−1‖
σρβ∗

)
T−5/2σ‖ϕm‖ for 0 < T � τ∗, (3.20)

computing β∗ for L̂, b0 and using the choice of n to have ζ/n � ζ0 for the final step. In comparison
with (3.16) we will eventually finish this computation by selecting the ‘observation operator’ S to give
σ = σm such that the expression ‖D−1‖/σρβ∗ in (3.20) will be bounded uniformly in m.

To complete the proof we now wish to find – case by case, depending on µ = µm and on our selection

of b0 – an appropriate choice of D = Dm which will make M = {L̂ = DLD−1: µ ∈ [1,∞)} admis-
sible for the application of (3.8) in Theorem 3.3 to justify uniformity in our derivation of (3.20). From
(3.17) we immediately note that, in each case, we must have

1/ν, ν, κ/ν, ν/κ = O
(√

µ
)

(3.21)

for M to be bounded. This assumes that α is bounded; similarly, we will necessarily assume that α is
bounded away from 0 in showing linear independence.

For the case of thermal observation, so b0 = [1 0 0] and

b0L̂ =
[−1 0 α

ν
√

µ

]
, b0L̂

2 =
[ (

1 − α2

µ

)
α
κµ

−α
ν
√

µ

]
,

we see that for the independence requirement, in addition to (3.21), we need κ = O(1/µ). With a little
manipulation, it is easily seen that the only usable scaling in this case is to take κ ∼ 1/µ and ν ∼ 1/

√
µ;

to within constant factors, this makes

∥∥D−1∥∥ =
√

µ, b∗ = [0 a 0] so β∗ = α, ρ = 1. (3.22)

Thus, to get σ � √
µ we choose S = M1/2 so, from (3.20) and (3.15), we get

∥∥U (T )
∥∥ � Kα−1 T−5/2∥∥M1/2θ

∥∥
L2(Q) for 0 < T � τ∗ = τ/2ζ0 (3.23)

with K = rc3/ζ2
0 for some r > 1 and with τ∗ = τ/2ζ0 where τ is as in (3.8) for this r and the

above choice of M – again noting that we have assumed α bounded and bounded away from 0 in
constructing M.

For displacement observation, so b0 = [0 1 0] and

b0L̂ =
[

0 0 κ
νµ

]
, b0L̂

2 =
[ −ακ

µ
−1
µ 0

]
,

we must supplement (3.21) by requiring, e.g., that ν/κ = O(1/
√

µ) and 1/κ = O(1/µ). This is possible
if and only if κ ∼ µ and ν ∼ √

µ in this case, whence

∥∥D−1∥∥ = 1, b∗ = [α 0 0] so β∗ = α, ρ = 1/κ = 1/µ. (3.24)

Thus we need σ ∼ µ and must choose S = M to get, as with (3.23),

∥∥U (T )
∥∥ � Kα−1 T−5/2‖MAθ‖L2(Q) for 0 < T � τ∗ = τ/2ζ0. (3.25)
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Finally, for velocity observation, so b0 = [0 0 1] and

b0L̂ =
[ −αν√

µ
−ν

κ
√

µ 0
]
, b0L̂

2 =
[ αν√

µ 0 − 1+α2

µ

]
,

we must supplement (3.21) by requiring, e.g., that ν/
√

µ and ν/κ
√

µ each be bounded away from 0,
which necessitates κ ∼ 1 and ν ∼ √

µ in this case. The computation of b∗ from (3.7) is here a bit
messier, but we get

∥∥D−1∥∥ = 1, β∗ =
α√

1 + α2
, ρ = 1/ν = 1/

√
µ. (3.26)

This time, since ‖D−1‖/ρ =
√

µ, we are led to choose S = M1/2 so the observation is ϕ = Sv = Mwt.
Thus, in this case, we get

∥∥U (T )
∥∥ � K

√
1 + α2

α
T−5/2 ‖Mwt‖L2(Q) for 0 < T � τ∗. (3.27)

Collecting (3.23), (3.25), (3.27) is just the desired result (3.1). �

3.4. A variant when γ = 0

The computations of κ, ν in the proof above show why the observational topologies in (3.1) are sharp
in each case when γ > 0. However, when γ = 0 so M ≡ 1 it is possible to determine the state in H
from internal observation of the deflection w taken with a weaker observational topology than was used
above in Theorem 3.1, i.e., now taking w in L2(QT ) for the observation. The proof is quite similar to that
above but now depends on the fact that when γ = 0 we have the exponential decay estimate (4.10) of
Lemma 4.3 below. However, the reduction in regularity from H2(Ω) to L2(Ω) does result in an increase
in the blowup rate from O(T−5/2) to O(T−7/2) as T → 0, as well as increases in the blowup rates
as α → 0,∞.

Theorem 3.5. For every α > 0 and every T > 0 it is possible to observe the displacement w,
topologized in L2(QT ) and determine the full state (w, wt, θ) at the final time T , topologized in
H∗ = H2(Ω) × L2(Ω) × L2(Ω), for the linear thermoelastic system (4.1), (2.1). The map: ϕ = w �→
(w, wt, θ)|t=T is then continuous with norm C = C(T ; α), as in (1.12), with the asymptotics

C(T ; α) � ψT−7/2 as T → 0 for fixed α

with ψ = O(1/ωβ∗) =
{
O

(
α−3

)
as α → 0,

O(α) as α → ∞.

(3.28)

Proof. We only sketch the proof as it is essentially similar to that of Theorem 3.1. We now use
Lemma 4.3 (4.10) to replace the first inequality in (3.18) by

∣∣Um(T )
∣∣ =

∣∣∣∣eζLUm

(
k

n
T

)∣∣∣∣ � κ2 e−ω(1−k/n)ζT

∣∣∣∣Um

(
k

n
T

)∣∣∣∣
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and later, taking n even, sum over k = 1, . . . , n/2. We are taking S = A−1 (so σm = 1/ζm) to have
ϕ = w = Su. Thus, with D = 1 so ρ = 1 and then taking n ≈ 2 ζm/ζ0 , (3.20) will now become

∣∣Um(T )
∣∣ � κ2 e−ωζT/2

√
ζ

n/2
C

(
ζT

n/2
; L, b0

)
‖ϕm‖L2(0,T/2)

� rc3κ
2

β∗ζ2
0

T−5/2 e−ωζT/2ζmσm‖ϕm‖

and (3.28) follows on bounding e−ωζT/2ζ by c/ωT and then combining the asymptotics for β∗ used
earlier for Theorem 3.1 with the asymptotics for ω(α) of Lemma 4.3. �

4. Boundary observation (γ = 0)

In this section we consider the same system (1.2), (2.1) as in Sections 2 and 3 but our concern in
this section is with geometrically localized observation – restricted to (part of) the boundary ∂Ω – for
a single component: z = θ or u or v. Since the boundary conditions (2.1) specify that z ≡ 0 on ∂Ω in
each case, we will consider observation of the normal derivative so ϕ = zν ; this is particularly natural
for z = θ where the observation is just the resultant heat flux. Again, a principal point of this subsection
is that being able to cite general results – here Theorem 4.2, taken from [23] – simplifies the arguments
considerably when that analysis is applicable. We might again comment along the lines of Remark 3.2.

For boundary observation we cannot have as complete a reduction as for the case of observation on
all of Ω considered earlier: we will obtain a family of infinite-dimensional problems for each of which
we are concerned with the ‘window problem’ of nonharmonic analysis. The technical restrictions of the
available result here [23] sharply restrict the applicability of this approach (cf. [22]). In particular, we
must restrict our attention to the case γ = 0 so M = 1 and the system becomes

wtt + ∆2w − α∆θ = 0,
θt − ∆θ + α∆wt = 0,

L = L(α) =


−1 0 α

0 0 1
−α −1 0


 . (4.1)

Further, since the sparsity hypothesis (4.5) of Theorem 4.2 effectively restricts the applicability to
quadratically spaced exponent sequences and so to spatially 1-dimensional problems, our approach in
this section is to use spectral expansion to reduce our problem to a family of such spatially 1-dimensional
problems and (compare [13]) note that we are taking Ω to be a cylindrical product region Ω = (0, 1)×Ω∗
with boundary observation at the base Γ0 = {0} × Ω∗ in order to make such a reduction possible.

In the case γ = 0, boundary nullcontrollability in an arbitrary short time of thermoelastic beams
(dim Ω = 1) was established (without any asymptotics) in [11]. For thermoelastic plates with rotational
forces (γ > 0), there is a large body of literature yielding null or partial controllability results for T
sufficiently large (in line with finite speed of propagation exhibited by singular support of the underlying
PDE), but this type of result is not relevant to the topic we study.

To our best knowledge, as already noted in the Introduction, the result stated in Theorem 4.1 is the
first to provide asymptotics as T → 0 in the case of boundary control in one component only – for
thermoelastic plates or, more generally, for any nonscalar system.

The principal result we obtain in this section is:
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Theorem 4.1. We consider the linear thermoelastic system (4.1), (2.1) on a product region Ω = (0, 1)×
Ω∗. Then for every α > 0 and every T > 0 it is possible to observe ϕ = zν on Γ0 = {0} × Ω∗, taken in
L2([0, T ]×Γ0), for any of the components z of a solution and determine from this the full state (θ, w, wt)
at the final time T , taken in L2(Ω) ×H2(Ω) ×L2(Ω), equivalently, to determine U (T ) in L2(Ω → R

3).
For each of the cases

• Thermal observation (ϕ = θν so b0 = [1 0 0]) or
• Displacement observation (ϕ = uν = [Aw]ν , corresponding to observation with w topologized in

L2([0, T ] → H2(Ω)) so b0 = [0 1 0]) or
• Velocity observation (ϕ = vν = [wt]ν so b0 = [0 0 1]),

the map: ϕ �→ U (T ) is continuous from L2([0, T ] × Γ0) to H = L2(Ω → R
3) with norm C = C(T ; α)

uniformly bounded for T , α bounded and bounded away from 0, and with asymptotics as in (1.6): more
particularly,

C(T ; α) � ψ(α) eB/T as T → 0 for fixed α

with ψ(α) = O
(
α−1

)
as α → 0

(4.2)

for each of the three cases.

4.1. A general result of nonharmonic analysis

In this subsection we note a general result for the ‘window problem’ of nonharmonic analysis which
will then be applied to the thermoelastic system above. Noting that it was originally motivated by pre-
cisely the concerns at issue here, we cite the principal result of [23], specialized to treat eigenvalue
sequences with quadratic separation – i.e., restricting ν(·) in (4.5) below to the form δ

√
s, leading to the

estimate (4.7). For details and more general results of this nature, see [23,22], etc.

Theorem 4.2. Let Λ = {λm = τm + iσm: m = 1, 2, . . .} be a complex sequence satisfying:

σm � 0, (4.3)

uniform separation: for some s0 > 0,

|λm′ − λm| � s0 (m′ �= m), (4.4)

uniform sparsity: for some δ > 0,

#
{
λ ∈ Λ: 0 < |λ − λ∗| � s

}
� ν(s) = δ

√
s uniformly for λ∗ ∈ Λ. (4.5)

Then for each T > 0 there is a constant C = C(T ; Λ) such that

∑
m

∣∣cm eiλmT
∣∣2 � C2

∫ T

0

∣∣∣∣∑
m

cm eiλmt

∣∣∣∣
2

dt (4.6)
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with

C = C(T ; Λ) � A eB/T , (4.7)

where A, B depend only on the values of s0, δ in (4.4), (4.5), but not otherwise on the sequence Λ.

Thus, we necessarily have uniformity of the estimate (4.6), (4.7) over families {Λ} of such sequences
for which we can use fixed s0, δ, T > 0 and we have blowup in the estimate as T → 0, exponential to
the order of 1/T as in (1.6).

4.2. Reduction to a family of problems

We consider spectral expansion for solutions of (4.1), (2.1). Before proceeding with the expansion we
note some spectral properties of the particular matrix L = L(α) of (4.1).

Lemma 4.3. Let L = L(α) be as in (4.1) for 0 < α < ∞. Then L has distinct eigenvalues {ξ0, ξ1, ξ3}
and so a basis B = B(α) = {v0, v1, v2} of corresponding eigenvectors. The eigenvalues have negative
real parts with

0 < ω = ω(α) = −max
j

{
�(ξj)

}
∼

{
α2/4 as α → 0,
α−2 as α → ∞.

(4.8)

There is a constant κ (uniform in α) such that

1
κ

∥∥∥∥∥∥

 a0

a1

a2




∥∥∥∥∥∥ � ‖a0v0 + a1v1 + α2v2‖ � κ

∥∥∥∥∥∥

 a0

a1

a2




∥∥∥∥∥∥ (4.9)

for all complex triples a0, a1, a2 and we then have

∥∥etL(α)∥∥ � κ2 e−ω(α) t (4.10)

for all t, α > 0.

Proof. The characteristic polynomial of L is

p = p(ξ) = p(ξ; α) = ξ3 + ξ2 +
(
α2 + 1

)
ξ + 1.

Since p′ = 2ξ2 + (ξ + 1)2 + α2 > 0, p(0) = 1 > 0, and p(−1) = −α2 < 0, there is a unique real root
ξ0 which lies strictly between −1 and 0. There is also a conjugate pair of roots ξ1, ξ2 = −a ± ib with
a > 0 since the sum of the roots is ξ0 − 2a = −1; as the product of the roots is ξ0(a2 + b2) ≡ −1, we
have b �

√
26 a uniformly in α.

Since the roots are distinct, they depend analytically on the parameter α2 of p. At α = 0 we have
ξ0(0) = −1 and ξ1,2 = ±i; thus differentiating p(ξ) ≡ 0 with respect to α2 shows

ξ0 = −1 + (1/2)α2 + [higher-order terms],
ξ1,2 = ±i +

(
[−1 ± i]/4

)
α2 + [h.o.t.]



116 I. Lasiecka and T.I. Seidman / Blowup estimates for observability of a thermoelastic system

giving the asymptotics of ω as α → 0. Setting ξ = αη and α̂ = 1/α, we note that 0 = α̂2p(αη) =
η3 + α̂η2 + (1 + α̂2)η + α̂3 giving ηj → 0,±i as α̂ → 0 (α → ∞). This gives ξ1,2 ∼ ±iα so, since
Πjξj ≡ −1, we get ξ0 ∼ −α−2 as α → ∞, completing the argument for (4.8).

Since the eigenvalues are always distinct, the set of eigenvectors remains linearly independent as α
varies in (0,∞). We denote this ordered basis of eigenvectors by B = {v0, v1, v2}, consistently taking
v0 to correspond to the real eigenvalue ξ0 and taking v1, v2 to correspond, respectively, to the conjugate
eigenvalues ξ1, ξ2 with positive/negative imaginary part, respectively. Since L(α) is real, we can ask that
v0 have real entries and that v1, v2 be conjugate; for convenience, we keep the norm of each eigenvector
constant as α varies.

By standard perturbation results (cf., e.g., [12]) B = B(α) can be taken to vary smoothly with respect
to the parameter α of L(α). Since {v0, v1, v2} are also eigenvectors of α−1L, which is analytic in α̂ =
α−1, we can connect this α-parametrized trajectory to a trajectory in α̂ with α̂ → 0 as α → ∞. We fix

B(0) = {
(

1 0 0
)

,
(

0 1 i
)

,
(

0 1 −i
)
},

B(∞) = {
(

0 1 0
)

,
(

1 0 −i
)

,
(

1 0 i
)
}

(4.11)

and note, since the limits exist, that the trajectory: α �→ B(α) maps [0,∞] to a compact set in [C3]3.
Since each B(α) = {v0, v1, v2} is a basis, we have (4.9) – with κ uniform in α by the compactness.
Finally, using (4.9) for the spectral expansion etL[

∑
j ajvj] =

∑
j(aj etξj )vj gives (4.10). �

Lemma 4.4. Set βj = b0 · vj(α) and B = B(α; b0) = minj |βj |. Then

B(α) ∼
{

α/
√

2 α/2 α/2 as α → 0+,

α−1 α−1 α−2 as α → ∞,
(4.12)

respectively, for the three cases b0 = [1 0 0], [0 1 0], [0 0 1].

Proof. Since {vj} are eigenvectors, b0 · v = 0 would also give b0L · v = 0 and b0L
2 · v = 0, which is

impossible because B(α) is a basis.
To consider the asymptotics of B(α) as α → 0+, we differentiate the eigenvector equation with respect

to α to get [L− ξ]w = −[L′ − ξ′]v with w = v′. Since [L− ξ] is necessarily singular (rank 2), we have
supplemented this by v ⊥ w in keeping |v| constant to determine w. We then obtain

v0 = (1 α/2 − α/2) + [h.o.t.],
v1,2 = ([1 ± i]α/2 1 ± i) + [h.o.t.]

as α → 0 which gives the first line of (4.12). Similarly, although with a bit more work, one obtains the
given asymptotics as α̂ → 0, α → ∞. �

We now obtain the desired reduction by a spectral expansion.
Note that Ω = (0, 1) × Ω∗ is a separable geometry for A = −∆ given by (1.3) – i.e., that the

eigenfunctions form an orthonormal basis for L2(Ω) having the product form {ek(x)f
(y)}. For (1.3)
with this Ω we have

ek(x) = (1/
√

2) sin kπx (k = 1, 2, . . .) for x ∈ (0, 1); (4.13)
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similarly, {f
(y) for y ∈ Ω∗: � = 1, 2, . . .} is an orthonormal basis for L2(Ω∗) consisting of the eigen-
functions of the cross-sectional Laplacian −∆∗ on Ω∗ with homogeneous Dirichlet conditions at ∂Ω∗.
The corresponding eigenvalues of −∆∗ are {µ
} (taken with appropriate multiplicities; we note that each
µ
 > 0). One verifies immediately that the eigenvalues of A are then (π2k2 + µ
) with

A[ekf
] =
(
π2k2 + µ


)
ekf
 (4.14)

for each k, �.
If we expand the dependence on y ∈ Ω∗ with respect to the orthonormal basis {f
}, writing U in the

form

U (t, x, y) =
∑




U
(t, x) f
(y) (4.15)

with time-dependent vectorial coefficients U
(t, x) = 〈U (t, x, ·), f
〉, then by (1.11) and (4.14) each of
these coefficients satisfies the vectorial partial differential equation (system) in one space dimension:

[U
]t = −µ
L[U
]xx on (0, T ) × (0, 1) with U
 = 0 at x = 0, 1. (4.16)

This is the anticipated reduction to a decoupled family of 1-dimensional problems and we will be apply-
ing Theorem 4.2 to each of these separately.

That application, however, will require further expansion and we now expand U
 with respect to the
orthonormal basis {ek}, now writing U in the form

U (t, x, y) =
∑
k,


Uk,
(t) ek(x)f
(y) (4.17)

with vectorial coefficients Uk,
(t) = 〈U (t), ekf
〉 =
∫ 1

0 U
ek dx satisfying the ordinary differential equa-
tions

U̇k,
 =
(
π2k2 + µ


)
LUk,
. (4.18)

Thus we have

Uk,
(t) =
∑

j=0,1,2

aj,k,
 eξj (π2k2+µ�)t vj , (4.19)

where {(ξj , vj)} are the eigenpairs of L, as given in (4.1). The eigenpairs of the system operator L∗ =
LA appearing in (1.11) are here

{
ξj

(
π2k2 + µ


)
, ek(x)f
(y)vj

}
. (4.20)

To consider observation of the normal derivative, ϕ = ∂z/∂ν on the base Γ = {0} × Ω∗ – which is
here −∂z/∂x at x = 0 – one first chooses b0 to select the appropriate component for observation: z = θ
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or z = u = −∆w or z = v = wt. Then using (4.19) and noting that (4.13) gives −∂ek/∂x = −πk/
√

2
at x = 0, one gets

ϕ(t, y) = −zx(t, 0, y) = −(b0 · U )x(t, 0, y)

=
∑
k,


−πk√
2

b0 · Uk,
(t)f
(y)

=
∑




ϕ
(t)f
(y), where

βj = b0 · vj and ϕ
(t) =
∑
j,k

−πk√
2

βjaj,k,
 eξj (π2k2+µ�)t.

(4.21)

4.3. Proof of Theorem 4.1

Proof. We will use (4.17), (4.19), (4.21), together with Theorem 4.2 to obtain the desired estimate (4.2).
We begin by choosing b0 to select the relevant component of U for observation and then consider-
ing (4.17), noting the orthonormality of {ekf
} in L2(Ω) and of {f
} in L2(Ω∗) to get

∥∥U (T )
∥∥2 =

∑
k,


∣∣Uk,
(T )
∣∣2 =

∑
k,


∣∣∣∣ ∑
j=0,1,2

aj,k,
 eξj (π2k2+µ�)T vj

∣∣∣∣
2

� κ2
∑




∑
j,k

∣∣aj,k,
 eλ[�]
j,kT ∣∣2

� 2κ2

π2B2

∑



[∑
j,k

∣∣∣∣aj,k,
 βj
πk√

2
eλ[�]

j,kT
∣∣∣∣
2]

, (4.22)

where we have used (4.9) for the first inequality and then, for the second, multiplying and dividing by
(βjπk/

√
2)2 � π2B2/2 with B as in Lemma 4.4. Using the orthonormality of {f
}, we then have

∥∥ϕ(t, ·)
∥∥2 =

∑



∥∥ϕ
(t)
∥∥2 =

∑



∣∣∣∣∑
m

c[
]
m eiλ[�]

m t

∣∣∣∣
2

. (4.23)

Letting {m = 1, 2, . . .} represent a re-indexing of the pairs {j, k}, we have

cm = c[
]
m = aj,k,
βj

πk√
2

(4.24)

for each � and consider the family of sequences

Λ[
] =
{
λ[
]

m

}
with

λ[
]
m = λ[
]

j,k = −iξj
(
π2k2 + µ


) (4.25)

for j = 0, 1, 2; k = 1, 2, . . . as in (4.20) – each corresponding to the partial differential equation (4.16)
.
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To show that Theorem 4.2 will be applicable for each ϕ
 and will give estimates uniform in �, our next
major task is to show that the sequences Λ[
] = {λ[
]

m } each satisfy the separation and sparsity conditions
(4.4), (4.5) with parameters s0, δ which are independent of �. [These s0, δ may also be taken uniform
in α for α bounded and bounded away from 0.]

For each � think of the sequence Λ = Λ[
] in (4.20) as consisting of branches on the three rays
Rj = {tξj : t > 0} for j = 0, 1, 2. In verifying (4.4), we note that the separation would be minimized
by reducing µ to 0 and is then bounded below by the smaller of the distances from λ0,1 either to λ0,2 =
−3π2r or to the rays R1,R2. Since min{|ξj |} = r = r(α) is bounded away from 0 for bounded α and
the angular separation of the rays is bounded below, there is thus a uniformly applicable value of s0.

We next obtain a bound (dependent on s, α, but uniform in �) for the sparsity parameter δ. Note that

ν∗(s) = #
{
λ ∈ Λ: 0 < |λ − λ∗| � s

}
= #[Ds ∩ Λ] − 1

with Ds = {z ∈ C: |z − λ∗| � s}. Clearly, each such disk Ds is contained in an annulus A = AS,s =
{z ∈ C: S � |z| � S + 2s} so 1 + ν∗ is bounded by the sum (over the branches j = 0, 1, 2) of

#
{
k: S �

(
π2k2 + µ

)∣∣ξj(α)
∣∣ � S + 2s

}
.

This is maximized by again reducing µ to 0 and then taking S as small as possible (i.e., S = π2|ξj(α)|)
so

ν∗(s; α) � 3 #
{
k: 1 � k2 � 1 + 2s/

(
π2r

)}
� 3

√
1 +

2s

π2r(α)
.

Since we are only concerned with s > s0, this gives (4.5) with the desired uniformity of δ for bounded α.
Applying Theorem 4.2 now gives (4.6), specifically

∑
j,k

∣∣∣∣aj,k,
βj
πk√

2
eλ[�]

j,kT
∣∣∣∣
2

� C
(
T ; Λ[
])2

∫ T

0

∣∣ϕ
(t)
∣∣2

dt

� C∗(T ; α)2
∫ T

0

∣∣ϕ
(t)
∣∣2

dt, (4.26)

noting that C(T ; Λ[
]) is bounded uniformly in � since we have shown similar uniformity of the parame-
ters s0, γ whence we have C∗ = C∗(T ) uniformly in α for α bounded and bounded away from 0. We
then use (4.26) to continue (4.22):

∥∥U (T )
∥∥2 � 2κ2

π2B2

∑



[∑
j,k

∣∣∣∣aj,k,
 βj
πk√

2
eλ[�]

j,kT
∣∣∣∣
2]

� 2κ2

π2B2
C2
∗

∫ T

0

∥∥ϕ(t, ·)
∥∥2

dt, (4.27)

using (4.23). Of course, (4.27) is just (1.12) – and the asymptotic estimate (4.2) follows immediately
from (4.7) and (4.12). �
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