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Abstract

We will consider, with a focus on saturating feedback control laws, two problems
associated with damping in a bounded acoustic cavity © C IR3. Our objective is
to verify (compare [9], [11]) that these are strongly stable: for every finite-energy
solution, the acoustic energy goes to zero as t — oo. We will, in each case, for-
mulate the problem in terms of a contraction semigroup of nonlinear operators on
an appropriate Hilbert space and compare this with the corresponding semigroups
without saturation — following [2] in using the spectral methods of [1] to show
strong stabilization for those linear semigroups.

Key words: strong stability, saturating feedback, wave equation with boundary
control, structural acoustic interaction

1 Introduction

We will be considering, as indicating some relevant technical difficulties in
the analysis, the question of stabilization for two paradigmatic examples of
elastic systems when the feedback is dissipative but ‘saturating’. Both of these
examples involve the wave equation

2 —Az=0 inQCR? (1.1)
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(e.g., modelling acoustic vibration in a bounded enclosure €2) with interaction
available only at part of the boundary. In each of our examples the uncon-
trolled system is conservative and linear and it will be possible to show that
a corresponding linear feedback does stabilize the system. Our principal con-
cern here is to see that the saturating control law, coinciding with the linear
feedback for small enough data, still provides global stabilization: the relevant
physical energy goes to 0 as ¢ — co. As the saturation is inherently nonlinear,
our context will be the theory of contraction semigroups of nonlinear operators
on Hilbert space.

For our first example the boundary conditions for (1.1) will have the form

z, =@ on 09 (1.2)

where the control ¢ is to have support restricted to some specified I' C 0€2 and
will be determined by some implementable feedback law with the objective of
stabilization: we consider finite energy solutions of (1.1) so

E[t) = Ekinetic + gpotential = % [||Zt||2 + ||VZ||2] <0 (1.3)

and wish to ensure that — always — we have £(t) — 0 for the feedback-
controlled solutions. Formally, we may differentiate £(-), use (1.1), and then
apply the Divergence Theorem to the term (z;, Az) to get, in view of (1.2),

d€
E = /ZtZu = <Zt7 S0>F- (1-4)

N

For our first example we note that conceptually the simplest feedback to con-
sider would be to determine a boundary control by velocity feedback, setting

@ := —z restricted to I (1.5)

This gives d€/dt = —||(trace of z; on T')||*> so at least the control action
would be dissipative. Apart from showing that we then would eventually have
stabilization, there are three considerable difficulties with this:

e justification of the formal computation, especially noting that taking the
trace on I is an unbounded operator from L?(Q2) and finiteness of the energy
only leads us to expect z; € L*(Q).

e implementation — for which we are first concerned with the possibility that
an actuator on I' (e.g., involving coupling with a ‘smart material’ under
computer control) might only be capable of producing output with some
fixed bound M on the realizable control ¢.



e since (1.1), (1.2) with (1.5), and (1.3) are invariant under addition of a
spatial constant to z, our feedback cannot be expected to eliminate such
constants; the energy (1.3) does not provide a norm for the full state.

For the second of these difficulties we are led to consider the use of a ‘saturat-
ing’ control law: if (g is the control specified by the original control law (e.g.,
(1.5)), then we would actually use the determination: ¢ = F(¢g) with

. y if ||yl < M,
F(y) == min{1, M/||y||} = , (1.6)
My/llyll if [yl > M,

to ensure that ||¢|| does not exceed the saturation threshhold M.

Our major thrust in this paper is to show — for this and correspondingly for
our second example — that the linear control law (1.5) is asymptotically stable
and that we can overcome the technical difficulties to compare the effects of
(1.5) and its saturating version to show that the latter also provides stabiliza-
tion. For showing the asymptotic stability of (1.5), we follow [2] in applying
[1]. For consideration of the saturating version it had been our intention to
follow [9], but it seems more convenient to present, in the next section, a new
abstract comparison theorem which makes the comparison directly, without
the intervening reference to the uncontrolled situation used in [9]. [It is worth
noting at this point the emphasis in our Theorem 1 on output stabilization for
‘nice’ initial data.]

Our second example corresponds to damping of the acoustic vibration in €2
through interaction with a plate occupying a (2-D, flat) portion of the bound-
ary 0§ — the well-known structural acoustic model - [8,4]. Here the feedback
is through coupling of the acoustic vibration in {2 with the vibration in the
plate I'. We again use ‘velocity feedback’ to dampen those vibrations and so
the entire system, but for the structural acoustic model this will appear as
distributed control on (part of) I' (i.e., in the system equations) rather than
as boundary control on I' C 0f2 as in our first example.

Thus, for the second problem we have

z = Az in QcR?

2, = W onI' C 992

z,+cz=0 on["=0Q\T (1.7)
wy + A%w+ 2, = —p in T (CR?

w=0, Aw=0 at OI' C R?.



Remark 1 Note that the Laplacians A appearing in (1.7) are different in the
equations for z and for w, with the first a 3-dimensional Laplacian associated
with  and the second a 2-dimensional Laplacian associated with I'. The in-
troduction of the term cz on I'" with 0 < ¢ # 0 will add a boundary term to
the energy, which then provides a norm. This choice for the example, slightly
modifying our formulation, is purely for expository purposes. The simplest
possibility in this setting for dissipative feedback would be to observe y = aw;
on supp (a) C T and then determine the control ¢ by a saturating feedback
© = aF (y) with F as in (1.6) so we would have linear feedback ¢ = a*w; when
wy 18 not too big but ¢ remains bounded with ||| < M always. It would not
have been difficult to include this as an example, proceeding along the lines
we present, but we choose, instead, to provide a somewhat ‘more unbounded’
example, involving a version of Kelvin—Voigt damping.

For our second example, we will assume observation here of y := A(aw;) on
supp (@) C I' and then set ¢ = —aAF(y), again with F as in (1.6). [Note
that, if we did not have saturation and took ¢ = 1 on I', then this control
term would just be —AZwy, i.e., Kelvin—Voigt damping.] The main technical
difficulty associated with this problem is that the domains of the corresponding
generators are not compact with respect to finite energy norms. On the other
hand, it is known that compactness of the resolvent operators is used critically
for the proofs of strong stability (see [11] and references therein). While this
type of difficulty can be dealt with, via spectral analysis (Tauberian type of
theorems — as [1]) for linear problems, we are not aware of any prior results
pertaining to nonlinear hyperbolic dynamics and strong stabilizability in the
absence of compactness.

In the next section we will provide a somewhat abstract formulation of our
approach and then treat the details for each of the examples in Sections 3, 4.
The key to our approach is Theorem 1, a somewhat simplified version of
Theorem 2 of [9], comparing the saturating and the linear versions of the
feedback. For the linear version strong stability will follow from the Arendt-
Batty result [1], as in [2], using a spectral computation.

The two examples in Sections 3 and 4 illustrate the strength and applicability
of the abstract theory developed in the next section. Indeed, the strong stabil-
ity results obtained for these examples do not follow from standard approaches.
To wit, a major difficulty in Example 1 is the presence of nontrivial steady
states in a classical formulation of the abstract wave equation. This of course
could be eliminated (as done in the literature) by modifying the boundary
conditions on 0f) or by creating a “hole” in the domain with zero Dirichlet
boundary conditions prescribed on a portion of the boundary. However, in
our tratment we do not do this, aiming for the ultimate goal of stabilizing the
acoustic energy only.



In the second example the difficulty is more serious as it is related to an
intrinsic lack of compactness of the resolvent operator.

2 General theory

We first give a new version of Theorem 2 of [9]. Note that all the spaces here
are Hilbert spaces and all the operators are single-valued. For our applications,
S(-) will be the evolution semigroup of the controlled system of interest, i.e.,
with (nonlinear) saturating feedback, and S(-) will be the (linear) compari-
son semigroup associated with the corresponding feedback without saturation.
While the underlying ideas are the same as in [9], the present argument is made
both simpler and a bit more general by avoiding the further comparison with
the uncontrolled sytem with no feedback at all. For our examples the feedback
can be expressed — in the context of sufficiently smooth solutions — through
a linear operator C : x +— y giving the ‘observation output’ and we will be
taking 1(x) := ||Cx||? so the critical assertion (C) in the proof below is just
‘output stabilization’ for the system with smooth initial data.

Theorem 1 Assume

(H1) —A and —A are, respectively, generators of continuous contraction
semigroups S(+) and S(+) on a Hilbert space X, i.e., A, A are densely defined
mazimal monotone (single-valued) operators on X.

(H2) There is a function ¢ : X D D(¥) — Ry such that

(1) D(A),D(A) C D(¥)
(2) foré e D(!}) with ||€|| < w, ||z@§|| <A (& AE) — 0 implies () — 0
(8) for & € D(A) with ||€]| < p, ||AE|| < A ¥(+) is uniformly continuous:
X = R;.
(4) when (&) < a: € € D(A) if and only if € € D(A)
— and then AE = A€
(H3) S(-) is strongly stable — i.e., S(t)zo — 0 for each zo € X.

Then S(-) is also strongly stable.

PROOF: Our principal task will be to prove that:
(©C) If zy € D(A), then ¢(S(t)xy) — 0 as t — oo.
To see from (C) that S(¢)zy — 0 for zy € D(A), note that it gives ¥ (S(t)zy) <

a from some time s on so, by (H2-4), A then coincides with A and the
convergence to 0 of S(t)zy = S(t — s)z(s) follows from (H3). Now, if we
are given arbitrary =, € X, then for any € > 0 we can choose zy € D(A) with
||zy — zo|| < /2 and note, first, that ||S(t)xy — S(t)zo|| < &/2 for all t > 0 and

then that x(t) := S(t)xo — 0 as ¢ — oo so, from some time on, ||z(t)|| < /2



whence ||S(t)xp|| < e —i.e., one has S(t)zy; — 0 as t — 0 for all zj, € X.

To show (C) we fix g € D(A) and set p := ||zo||, A := ||Axy]|, x(¢) := S(¢)zo,
¥(t) := (x(t)). Note that for ¢ > 0 we have ||x(t)|| < p and, by Komura-
Kato Theorem (cf., [10] Prop 3.1 p. 174 ), we have D;'x = Ax pointwise the
function ¢ — Az(t) is rightcontinuous with ||Az(t)|| decreasing. *.

— x(t) € D(A) (so 1 is well defined) and ||Ax(¢)|| < A. By (H2-2) we have

Vo > 0,38 = B(6) = B(J; 1, A) such that:

(2.8)
1€l < m, AL <A (A <B = P <4

and by (H2-3) we have

Vd >0, 3y = v(6) = v(d; p, A) such that:
if [lE] 11€] < . [ AEIL AL < A, (2.9)
then:  [lE=&[ <y = [¥(&) ()] <6

Supposing we have ¢(8) < « for some § > 0 so, by (H2-4), we have z(8) €
D(A) with Az(5) = Az(8) and ||Az(5)|| < A. Then we set & (t) := S(t—3§)z(5),
O(t) = ¥(&(t)) for t > §; note that 1)(3) = 1(8) < a and, again using Komura-
Kato Theorem, we have Djf# = A# pointwise — #(t) € D(A) (so ¢ is well

defined) and ||AZ(t)| < A.

If (C) were to fail, there would be some (fixed) zo € D(A) for which, using the
notation above, one has some § > 0 and a sequence t; — oo with 1/;(15;9) > 20;
without loss of generality we assume 26 < «. Now observe that, for arbitrary
0<s<t— o0,

2 [ A% = [~ = o) — Il < Ix)? (210)

s0, as (x, Ax) > 0, there is a sequence s, — oo at which (x, Ax) — 0 so, by
(H2-2), we have 9(sg) — 0.

Without loss of generality, we assume each &(sk) < ¢ < a and introduce
& = &y by taking § = s; in the notation above, i.e., Zx(t) := S(t — sx)x(sk)

! This equality depends, of course, on the single-valuedness of A. We also note
that we are here taking D; x to be the forward derivative (lim[x(t + h) — x(t)]/h
for h N\, 0+)



and () = ¢y (t) == Y(&(t)) for t > s;. Note that each 1)y, is continuous in
for t > sy, since Zx(+) is continuous — indeed,

t
/ j .
s

— and we have (H2-3). There is then a maximal interval Z = [sy, tx] on which
¥ < «. On this interval 2~ = AZ = A& by (H2-4) so, by uniqueness of the
solution, Z(t) = S(t— sk)Z(sk) = x(t) on Zy. By continuity, there is necessarily
a subinterval Z; = [5y, tx] C T such that, noting that &k =) on Iy,

la(t) - #(s)ll < < [lAz] <At s (2.11)

b(5) = 6 < h(t) <26 = P(f;) on .

Note that, by (2.8), having ) > 6 requires that (x, Ax) > 8 = 5(0) > 0 on Zj.
Also, by (2.9), ¥(tx) — ¥(5k) = § requires that [|Z(tx) — Z(5x)]| > 7 = 7(9)
whence, by (2.11), we have t; — 5 > /). Combining these shows that the
integral over Z; of (x, Ax) is not less than 3v/\ > 0, independent of k. Since,
without loss of generality, we can assume that the intervals Z, are disjoint,
this would contradict the bound on [(x, Ax) dt of (2.10) — i.e., we must have
Y — 0 as in (C). |
For each of our systems the state space X’ will have the form X' = U x H where
U is a Hilbert space of ‘configurations,” with a norm related to the potential
energy, and H is a space of velocities (momenta), with the L? norm related to
the kinetic energy. We will introduce an ‘evolution triple’ Z «— X — Z* and
an operator A : Z°%% Z* for which Ax = Ax forx € D(A) :={x € Z C X :
Ax € X C Z*}; note that writing Ax as an element of Z* provides a weak
form which evades our difficulties with unbounded operators.

We observe at this point that, for any Hilbert space ), the function F' —
which is just the ‘nearest point projection’ on ) to the ball of radius M — is
a continuous, maximal monotone operator; indeed, F' is the gradient of the C*
convex functional given by {3r?ifr < M; Mr — i M?ifr > M} with r = ||y]|.
We will have, in each case,

(x1 — X9, Axy — AX9)[z:24) = (Y1 — Y2, F(y1) — F(y2))y >0 (2.12)

so A (hence also A) is monotone. To show that A is maximal monotone,
it is sufficient to show that (A + 1) is surjective. Since (2.12) does not give
coercivity, we proceed indirectly and consider a ‘reduced’ problem involving a
related operator M : V<25 V* with V «— H < V*. This M will be monotone
and coercive, which will enable us to show that —A generates a contraction

semigroup S(-) on X. A similar construction applies to the linear problem,



with F(-) replaced by the identity on ). To verify the hypothesis (H3) above
we will, in each case, apply a result by Arendt and Batty [1]:

Theorem 2 Let S() be a Cy contraction semigroup of linear operators on
a Hilbert space X with infinitesimal generator —A. If O'(A) N:R s at most
countable and contains no point spectrum, then é() 18 strongly asymptotically
stable, i.e., S(t)xo — 0 as t — oo for every zy € X.

Our argument is then completed by verifying the hypothesis of Theorem 2
on o(A) — indeed, we will show for our examples that o(A)NiR = § —
obviously to be considered in the complexifications of the relevant spaces.

This verification will similarly involve reduced problems.

Our key steps in the analysis of each of these examples will thus be the fol-
lowing:

(1) Reformulate the problem as a first order system
(a) Specify the relevant Hilbert spaces: X =U X H, Z — X — Z*, etc.
(b) Write (explicitly) the operator A : Z — Z* (and note its monotonic-
ity).
(2) Show that (A +1) : X D D(A) — X is surjective. [This shows the
nonlinear operator A is maximal monotone; the same argument shows
the linear operator A is maximal monotone.]

(3) Show that (A —irl) is invertible for 0 # r € R
(a) Write the equations to be solved
(b) Use the ‘first equation’ to eliminate the U/-component, obtaining a
‘reduced problem’ for the H-component
(c) Formulate this in terms of a continuous operator M, : YV — V*
(d) Note that V — H is compact and that (M, + s1) is monotone and
coercive for large s > 0 so M, has compact resolvent,
(e) Use the detectability assumption to show M, is injective and so in-
vertible
(4) Show that A is invertible.

3 Example 1: Boundary feedback for the wave equation

We are here considering the damping of acoustic energy, as in (1.3), for the
wave equation (1.1) defined on a bounded domain  C R?® with saturating
velocity feedback in (1.2) — i.e., we consider finite energy solutions of

zw = Az in Q  with 2z, = —aF(az;) on OS2 (3.13)



where a(+) is a bounded measurable function on 92 with nontrivial support I'
and F', defined in (1.6) for the observation y = az;, gives the saturation
at threshold M > 0. We will follow the four steps above to show that the
associated acoustic energy £(t) of (1.3) always decays to 0 as t — oc.

We impose a technical detectability assumption regarding I':

(D ) There is no eigenfunction: Az = —cz (z, = 0) with ¢ # 0
for which z vanishes on I'.

Remark 2 We note that, on the strength of Holmgren’s Uniqueness Theorem,
the detectability condition holds true whenever I' is an open set in Of).

Theorem 3 Assume the detectability condition (D). Then we have £(t) — 0

as t — oo for every solution of (3.13) with initial data of finite energy, where
E(t) is defined by (1.3).

PROOF: As Step 1 we will reformulate (3.13) as a first order system. The
usual way to do this would be to consider state components (z, z;), but that
choice would lead to difficulties with degeneracy of the ‘energy norm.’ Instead,
we introduce the Hilbert spaces

U= L;md(Q), H=IL*Q), X=UxH, V=H(Q), Z=UxV (3.14)

where we note that L? () = {Vh: h € V} is a closed subspace of L?({2 —

grad
IR?) and so is a Hilbert space in its own right. Indeed, this follows from the fact
1
that L;m 4(€2) coincides with the range of V considered as a map : HT(Q) —

[L2(2)]3. Since this map is closed (in fact continuous) with continuous inverse,
its range is closed.

We write the state as x = (£, u)" € X, with £ and u corresponding to Vz and
2, respectively, so 1]|x||% is just the energy & of (1.3). The wave equation (3.13)
then takes the form

& =Vu
on Q  with £-v = —aF(au) on 09. (3.15)
Uy = V- 6

Note that if we are given the usual (finite energy) initial data: z =ze V and

2 =2'€ M at t = 0, then the data for (3.15) will just be xo = (V 2,2)7 € X.If
we can solve (3.15) for x = (£, u)", then we have z; = u and we can recover z,



itself, either from z =2 + [{ u or from

Vz=¢ with /z:/§+j
0

Q Q

[

We wish to consider (3.15) as x + Ax = 0. It is preferable to give a weak for-

0 -V
mulation for A, since just writing A = ) would hide the boundary
-V 0
conditions, including the feedback of particular interest to us, in the domain
specification. A simple (formal) calculation shows that

(X, Ax)y = /fc (_OV _(]v) X

Q
= [o[Vi- & — €& Vu]+ [, ailF (au)

and, as this last makes continuous sense whenever x,x are in Z, we define an
operator A : Z — Z* by

Ax = [5{ — /[Vﬂ E—E€-Vul + /aaF(au) (3.16)

Q r

and, now simply specifying D(A) as the pre-image of X under A, use this
to define Ax := Ax. We easily see from (3.16) that (2.12) holds here so A
(whence also A) is monotone.

For Step 2 we must show solvability of: Ax+x = f for arbitrary f = (f,¢)" €
X, ie., find (&§,u)" € D(A) [noting that D(A) C Z C X] such that

/[Vﬂ-g—é-Vu]+/aaF(au)+/[5-§+au]:/[§-f+ag]

for all (€,%)T € Z. With @& = 0 this gives £ = Vu + f so, setting

Mu :=[i— [o[Va - Vu+du] + [patF(au)] € V* forueV
F =i folVi- f gl € V",
we have the reduced problem of solving Mu = f. Since we easily see that

M YV — V* is coercive on V as well as continuous and monotone, this can
be solved for u € V C H and we then set & = Vu + f to get the desired

10



x = (&,u)" € D(A) C X. This proves that (A + 1) is surjective to X so A is
maximal monotone and —A generates a contraction semigroup S(-) on X.

The same argument shows that —A (where, we recall, —A corresponds to
the linear problem ) generates a contraction semigroup S(-) on X so we have
verified the hypothesis (H1) of Theorem 1. The observation operator for this
example is

C:Z—Y:=L*)C L*09):x = (£u)" — aftrace of u] (3.17)

so ¢ : x = ||y||3 = ||Cx|[} is uniformly continuous on bounded subsets
of Z — although it is not well-defined on X. Since {x € D(A) : [|x]|lx <
1, ||(A+1)x||x < A+p} is bounded in Z (and similarly for A), we have verified
(H2-1) and (H2-3). Then (H2-2) follows from (2.12) and the definition (1.6).
Finally, (H2-4), with o = M?, follows from the definitions of A, A, which
differ only for ||y|| > M.

For Steps 3,4 we are considering solvability, for arbitrary f = (f,g)" € &, of:

(A —irl)x = f so we are seeking x = (§,u)" € D(A) C Z C X such that
/[W-{:—g-Vu]—f-/aQﬁu—i-/ir[g-{f-i-ﬁu]:/[g-f—i-ﬁg]
0 r Q 0

for all (5 , )" € Z — where, of course, the overlines indicate conjugation since
we must now work in the complexified spaces. As earlier, with 2 = 0 we will
get: —Vu+iré — f=0in U.

When 7 # 0 we may then use this to eliminate &: with & = (Vu + f)/(—ir)
the equation is equivalent to seeking v € V C H such that: M,u = f where

Mu = ['& = [0l Vi - Vu — r?au] — ir fn a%u] eV forueVy

=i [o[Vii- f—Tg]] € V™.

We easily verify that (M, + s1) : ¥V — V* is coercive as well as continuous
and monotone when s > r?, so there exists (M, +s1)"! : V* — V < H. Since
the embedding V := H'(Q) — H := L?(Q) is compact, this shows M, has
compact resolvent and so is continuously invertible on #, whence (A — ir1)
is continuously invertible on X, if M, is injective. Thus we wish to show
u = 0 when M,u = 0. The imaginary part of (u, M,u)p+ is [ra®|ul® so
M,u = 0 gives y = au = 0 € Y (i.e.,, u vanishes on supp (a)) and the
homogeneous equation becomes simply the weak form of the eigenfunction
equation: —Au = r?u with u,, = 0. Since we are here considering 7 # 0 so
u F#const., the assumption (D’) above then gives u = 0. This shows that for
0% r € R we have ir ¢ o(A).

11



When r = 0 above, we must proceed differently: we have Vu + f = 0 and will
now use this to eliminate u. Note that f € U so there is some h € V with
f = Vh; thus V(u + h) = 0 gives u = —h + ¢ where the constant c is to be
determined. We also note that we are seeking & € U in the form & = Vv by
the definition of L;m 4(€2). Then our equation, with € = Vi, just becomes the
weak form of

~Av=g¢g  withv, =d’(h—c).

It is well-known that this has a solution if and only if [, ¢ + [ v, = 0, so we
have the unique determination that ¢ = [f, ¢ + Jr a®h] / [Jr @*] . The resulting v
is not unique, but this indeterminacy is nugatory: £ = Vv is unique in /. This
establishes a map A~' : X — D(A) C X and, since A is clearly a closed
linear operator, the map A ! is continuous, showing that 0 ¢ o(A) and so
completing Step 4.

This verifies the spectral hypothesis of Theorem 2 which in turn, verifies (H3),
completing the verification of the hypotheses of Theorem 1. It now follows from
that Theorem that we have the desired asymptotic strong stability: S(¢)xe — 0
in X as t — oo. [

Remark 3 Note that we are not asserting that z — 0. [Indeed, it is not even
clear from our results that we can be certain that z remains bounded as t —
oo since we do not know that [z remains bounded: we know convergence
of [z to 0 as t — o0, but not its integrability on R,, which would give
the boundedness of z.] We have, however, shown — as promised — that the
acoustic energy E(t) will always go to 0 ast — oo.

4 Example 2: The structural acoustic model

We recall the coupled feedback system (1.7) from Section 1:

wy on I C 09
2w — Az =0 on €, 2, =
—czonI"=0Q\T
(4.18)
wy + A?w + aAF(Alaw;]) = —2; on T,

w, Aw =0 at oI

where a is a nontrivial smooth function on I' C 9€) with support in the interior
of I' and the function c is assumed positive.

12



We consider finite energy solutions of (4.18) with

E(t) = Ekinetic T gpotential (4.19)

where, for this example,

Ekinetic E% /|Zt|2+/|wt|2]
LO T
gpotential E% /‘V'Z‘2+/CZQ+/‘AW|2
LO I r

As before, if we (formally) apply the Divergence Theorem we obtain d€/dt =
— JryF(y) <0 (now with y := Afawy]), so our feedback is again dissipative:
the energy is nonincreasing.

Our main aim is to ensure that we have £(t) — 0 as ¢ — 0 for all finite
energy initial data. This property was shown in [2] for the linear model (i.e.,
when F' <~ 1) with Kelvin-Voigt damping on the wall T" ( i.e., a(z) > 0 ).
The theorem stated below extends the result of [2] to the nonlinear case of a
saturated feedback with partial damping active on a subset of I'.

Theorem 4 Assume that the support of a(-) contains a nonempty open set
['o C T'. Then the system (4.18) is strongly stable: £(t) — 0 as t — oo (4.19)
for every solution with initial data of finite energy.

Remark 4 As mentioned before, this example illustrates a situation when
strong stability is obtained in an absence of compactness for the resolvent
operator. We also note that the same result holds for other choices of well-
posed boundary conditions (free, clamped) associated with the plate equation

in (4.18).
PROOF: We proceed with the four steps at the end of Section 2, but present
these in somewhat less detail than in the last section.

As Step 1 we begin by reformulating (4.18) as a first-order system on an
appropriate state space. We will here take

U=V :=H'(Q) x HX(') with H3(T) :={w € H*(T') : w|y. =0} (420)
o= [2Q) x IAT) X :=UxH Z:=UxU '

13



The inner product of the Hilbert space X will be

(%x) = [ (V2 Vet au]+ [zz+ [ [(AD)(Aw) + 0], (4.21)

Q

noting that with nontrivial ¢ > 0 on I this induces a norm on X.

z u
We will write £ = ( ) €U and w = ( ) € H so, as is usual for a second
w v

order system, we are taking the state to be x = ({,w)" = (z,w,u,v)" € X
with u, v to be identified with z;, wy, giving w = &. Then (4.18) becomes

z —u
w —v

x+ Ax =0 where A : — (4.22)
u —Az
v Aw + ulp + aAF(Alav))

with the domain D(A) given by:

Az € L2(Q), A%w+ aAF(Alav]) € LA(T),
D(A) = {x€ Z: {—czonF’
2z, =

vonl,

Aw =0 at oI

Remark 5 Note that the domain D(A) is not compactly imbedded in X. To
see this it suffices to consider the following set

D ={(z,w,u,v) € Bx(0, M); supp w € T'y,v+ w =0,
Az=0,2,+cz=0, onT',z, = v; on T} (4.23)

Clearly DD(A) is a bounded (in X ) subset of D(A), yet not compact in X.

The weak formulation of this is
(xX,Ax)x = [o[Vi-V2—=VZ- -Vu]+ [ cliz — Zu] + [p[0u — Q]

+ Jp[(A0)(Aw) — (Aw)(Av)] + Jp Alad] F(Alav])
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and, as this last makes continuous sense whenever x,x are in Z :=U X U, we
define, as a realization of A, the operator A : Z — Z* for this example by

JolVi-Vz—VZzZ - Vu] + [ claz — Zu] + [p[0u — Gv]
Ax = |x (4.24)

+ Jp[(A0)(Aw) — (Aw)(Av)] + Jp Alat] F(Alav])

and note that we again have (2.12) with y = Afav] € Y = L*(T') well-defined
for v € HZ(T'); we define A much as in (4.24), with F <= 1. Then A : X D

D(A) — X and similarly A : X D D(A) — X are well-defined and monotone
on X.

For Step 2 we again wish to solve Ax + x = f, with f, arbitrary in X C Z*.
While, as in the previous section, we could do all our computations using
the weak formulation, we will here write things in operator form. Thus, the

equation: Ax + x = f, becomes the system

—u+2z=2z € H(Q) —v+w=w, € H3(T)

—cz on I
—Az+u=u, €L*N) 2 =
v onl

A?w + ulp + aA F(Alav]) + v = v, € L*(I)  w=0= Aw at oI
The first equations give u = z — z,, v = w — w, which we use to eliminate u,v

in the last equations, obtaining the reduced system for { = (z,w)", which we
can now write as: M& = f € V* where

a JolVi - Vz+ az] + [ ciz
ME - —
tv + Jr[(AT)(Aw) + w] + [r(Alad]) F(Ala(w — ws)])
R u — Jo U(us + 24) + i ciw, + [ 0(ve + 24|p + ws)
tv

As in the previous section, M : V — V* is coercive, continuous, and monotone
on V — hence surjective [3] — and we use this to show that A is maximal
monotone, hence —A generates a contraction semigroup S(-) on X’; again the
same argument also shows that —A generates a contraction semigroup é()
on X. We have verified the hypothesis (H1) of Theorem 1. The observation
operator for this second example is

C:Z—Y:=LT):x=(z,w,u,v)" — y = Alav] (4.25)
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and ¢ : x — ||y||}, = ||Cx|[}, is uniformly continuous on bounded subsets of Z
since that bounds v in H?(T") and we have assumed the coefficient function af(-)
is smooth enough. The remainder of the verification for the hypothesis (H2)
of Theorem 1 is essentially as for Example 1.

For Steps 3,4 we are again considering solvability, for arbitrary f, € X, of:
(A—irl)x = f, in the context of the complexified spaces. As above, we use the
first equations of the corresponding system to get: u = irz — z,, v = irw — w,
and use these to eliminate u.v in the last equations to obtain the reduced
system:

) ] —cz on I'
—Az—r‘z=u, +1irz, 2, =
irw — w, on I
(4.26)

A?w — r?w + ir [aA%aw + z|;] = aA2aw, + irw,

w=0=Aw at 0Ol

Again, this may be expressed in terms of a continuouslinear operator M,
YV — V*. Without explicitly writing the full form of M,, we note that, for
€= (z,w)" €V, we have

(&, (M, +s1)¢

—Z(A2) + (s — %) |2

::\

+

=[928 + (s = )2 + [ elaf?

+ r/c[m{wz|r} + /[|Aw|2 + (s — r*)|w|?]

T

ﬁmA%m+ms—ﬂnwm+4r/wmA%u+4

r

e

+w/mwmﬁ (4.27)

Since trace: H'(2) — L?*(9) is compact, we have an estimate ||z|lr < €| 2||m1(q)
+C¢||2||12(n) and one easily sees that (M, + s1) is monotone and coercive for

large enough s € R. As for the previous example, this shows M, has compact

resolvent (for arbitrary r € R) so invertibility will folow from injectivity. Set-

ting 7 = 0 in (4.27), we see that this is immediate in that case — My = 0

gives 0 = (&, Mo&) = ||€]|2 so & = 0, completing Step 4.

16



For Step 3 we wish to show that the hypothesis of Theorem 4 regarding the
support of a(-) is sufficient to ensure the requisite detectability. This will now
involve two separate applications of the classical Holmgren Uniqueness The-
orem, once for each component of the coupled system. Taking the imaginary
part of (4.27) when s = 0 and M,£ = 0, we see that this gives A(aw) = 0
on I' and this, with the boundary condition: w = 0 = Aw at JI', gives aw =

on I' so w = 0 on I'y, whence also A%w = 0 on I'y. Using this in the second
equation of (4.26), now taken as homogeneous and interpreted pointwise, then
gives z = 0 on I'y. We also have z, = 0 on I'y from the boundary condition
of the first equation of (4.26) and so can apply the Holmgren Theorem to
assert that z must vanish on all of Q. With this, the second equation of (4.26)
becomes: A?w — 72w = 0 and, with w = 0 on the open set Iy, we may apply
Holmgren’s Unique Continuation Theorem to this fourth order elliptic equa-
tion to see that w = 0 on all of T'. This shows that ir & o(A) for arbitrary
r € R, verifying (H3) of Theorem 1 by use of the Arendt-Batty Theorem 2,
and so completing our proof. [ |
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