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Abstract

Counterexamples are constructed for some plausible conjectures.
Typical of these: as the Maximum Principle ensures that positive
boundary data give a positive state at time T from 0 initial data,
one might (plausibly, but falsely) conjecture that all positive terminal
states should be approximately reachable in this way, i.e., subject to
the requirement that the boundary data stays nonnegative.
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1. Introduction
For a given terminal time T > 0 and a connected bounded open region Ω,

we consider a diffusion equation with Dirichlet boundary data:

ut = Lu in Q = (0, T ]× Ω

u = ϕ on Σ = [0, T ]× ∂Ω

u = u0 on Ω at t = 0

(1.1)
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where
L : u 7→ ∇ · A∇u− qu (1.2)

with A symmetric and uniformly elliptic. Without specifying precisely, we
assume A, q are ‘smooth enough’ for our purposes; for simplicity we also
assume that A, q are independent of t. Paradigmatically, we think of L as
the Laplace operator 4 (with A ≡ I, q ≡ 0).

It is well-known that (1.1) has a unique classical solution u = u(·, ·;u0, ϕ)
for each u0 in X = L2(Ω) and each ϕ in Φ = L2(Σ). This solution is smooth
in Q, but may lose regularity as t → 0+ (unless u0 is smooth) and as one
approaches Σ (unless ϕ is smooth). Since L is the infinitesimal generator of an
analytic semigroup of operators S(·) on X , we have u(·, ·;u0, 0) in C([0, T ] →
X ) for each u0 ∈ X and write S = S(T ) : X → X for the continuous
linear operator: u0 7→ u(T, ·;u0, 0). We similarly define a linear operator
B : ϕ 7→ u(T, ·; 0, ϕ), but this is a bit more difficult to treat. It would be
convenient if B would be continuous from Φ to X , but this is false. Somewhat
ambiguously, we use B both for the operator defined for all ϕ ∈ Φ (without
an explicit specification of codomain) and also for the unbounded closed
operator: Φ → X without actually examining its domain. Thus we have

u(T, ·;u0, ϕ) = Su0 + Bϕ (1.3)

which may be taken as defining the operators S,B.
We now consider the ranges, letting

S = S(X ) = {Sw : w ∈ X}, B = B(Φ) = {Bψ ∈ X : ψ ∈ Φ}

be the relevant subsets of X . Noting that S contains the eigenfunctions of L,
as a self-adjoint operator on X with compact resolvent, we see that

S is dense in X (X = S). (1.4)

Interpreting (1.1) from a system-theoretic viewpoint, we can consider the
boundary data ϕ as a control. It is now well known (cf., e.g., [7], [8]) for the
heat equation (L = 4) and, e.g., [4] for more general coefficients) that (1.1)
is exactly nullcontrollable: for each u0 ∈ X , there is a control ϕ ∈ Φ making
u(T, ·) = Su0 + Bϕ ≡ 0. This gives Su0 = −Bϕ so

S ⊂ B. (1.5)
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Of course, it follows from (1.4) and (1.5) that (1.1) is approximately control-
lable,

B is dense in X (X = B), (1.6)

i.e., every target state can be (approximately) reached using some control.
On the other hand, since the solutions of such diffusion equations are quite
smooth in the interior of Ω for t > 0, it is clear that B cannot be all of X :
neither S nor B can be L2-closed.

Besides regularity, probably the best known property of such diffusion
equations is the Maximum Principle, one form of which asserts that every
solution of (1.1) remains nonnegative if u0, ϕ are each nonnegative. If we
introduce the order cones

X+ = {w ∈ X : w ≥ 0 ae on Ω}, Φ+ = {ψ ∈ Φ : ψ ≥ 0 ae on Σ}, (1.7)

then the Maximum Principle just asserts that their images under S,B, re-
spectively, are in X+ —

S+ := S(X+) ⊂ X+ and B+ := B(Φ+) ⊂ X+ (1.8)

This suggests asking whether the analogues of (1.6), (1.4), and (1.5) will also
be valid:

Q1 Is B+ dense in X+? (Is X+ = B+?)

Q2 Is S+ dense in X+? (Is X+ = S+?)

Q3 Is S+ ⊂ B+? (or even: Is S+ ⊂ B+?)

Less formally, the first of these questions may be rephrased in control-theoretic
terms as asking

Can nonnegative targets always be (approximately) reached by
using nonnegative controls?

while the third question may similarly be rephrased as

Can non-positive initial states always be steered (approximately)
to 0 by using nonnegative controls?
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Our object in this paper is to give negative answers to each of these
questions. This is somewhat of a continuation of the concerns of [9], but
we are also indebted to S.A. Avdonin for raising the first of these questions
and for noting the recent paper [2] by M.I. Belishev, which already provides
a negative answer to that question in the one-dimensional case for the heat
equation.

2. An adjoint computation and some lemmas
Given a function ω ∈ X , we consider our diffusion equation in reversed

time:
−vt = Lv in Q

v = 0 on Σ

v = ω on Ω at t = T.

(2.1)

Note that setting z(t) = v(T − t) gives a solution z of (1.1) with ϕ = 0
and u0 = z(0) = v(T ) = ω so v(0) = z(T ) = Sω. We use this for an adjoint
calculation.

Let u be the solution of (1.1) so u(T, ·) = Su0 + Bϕ for some u0 ∈ X
and ϕ ∈ Φ; we assume ϕ is such that Bϕ ∈ X so u(T, ·) ∈ X . Using the
Divergence Theorem and L2 inner products for Ω and Σ, we then have

〈u(T ), ω〉X = 〈Su0 + Bϕ, ω〉 = 〈u0, v(0)〉+
∫ T

0
[d〈u, vdt] dt

= 〈u0, v(0)〉+
∫ T

0
[〈Lu, v〉+ 〈u,−Lv〉] dt

= 〈u0, v(0)〉X − 〈ϕ, vν〉Φ

(2.2)

where vν denotes the conormal derivative at ∂Ω — i.e., vν = A∇v · n with
n the unit exterior normal; of course, this requires for legitimacy that vν

be in Φ. The computation (2.2) confirms the expected self-adjointness of
S : X → X and shows that the adjoint B∗ : X → Φ of the unbounded
operator B : Φ → X is given by

B∗ω := −vν subject to (2.1) (2.3)

with the domain of B∗ given by the requirement on ω that the solution v
of (2.1) is such that vν is in Φ.

We have already commented on the extraordinary interior regularity of
solutions of (1.1) with smooth coefficients and now comment more specifically
on (2.1), particularly noting a localization of irregularity.
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LEMMA 1 For ω ∈ X = L2(Ω) the solution v of (2.1) satisfies

v(t, ·) is smooth for t < T ; in particular,

Sω = v(0, ·) is in C1(Ω)
(2.4)

and if the support of ω is interior to Ω (i.e., if ω vanishes in a neighborhood
of ∂Ω) one also has

B∗ω = −vν is continuous on Σ, (2.5)

which shows that such ω are always in the domain of B∗.

Proof: Allowing for the time reversal, we note, e.g., from [3] or [5] the
integral representation

v(t, x) =
∫
Ω
G(x, y, T − t)ω(y) dy (2.6)

whose kernel G is the Green’s function for the operator L on Ω. The con-
clusions here now follow immediately from estimating v and Dxv by using
in (2.6) the estimate

|Dj
sD

k
xG(x, y, s)| ≤ Cs−[n+2j+k]/2e−c|x−y|/s (2.7)

given, with slightly different notation, in Theorem 16.3 (Chapter IV) in [5].
Note that for (2.5) we are concerned with x ∈ ∂Ω so the assumption on
the support of ω ensures that |x − y| is bounded away from 0 where this
is relevant in (2.6) and, although (2.7) is only given for s > 0, it certainly
then implies a uniform bound (and, in fact, convergence to 0) as s→ 0 with
|x− y| ≥ δ > 0.

Although stronger statements could be made, these are sufficient for our
purposes.

LEMMA 2 Let the region Ω be smoothly bounded and suppose the coeffi-
cients A, q are smooth. Then there exists a continuous function ω̃ ∈ X such
that

0 < ω̃ ≤ β on Ω with − ṽν = B∗ω̃ ≥ 1 on Σ. (2.8)
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Proof: Consider (2.1) with T replaced by some T ′ > T and with some
(fairly arbitrary) choice of positive initial data at T ′. By the strong Maxi-
mum Principle (cf., e.g., [6][Chap. 3, Sect. 3] applied to −v with M = 0) we
see, for all t < T ′, that the solution v(t, ·) is strictly positive everywhere in
the interior of Ω and that −vν is strictly positive everywhere on ∂Ω. We will
now let ω̃1 = v(T, ·). Allowing for the change to T ′, we note that this ω̃1 is
continuous on Ω by (2.4) and that −vν is continuous on Σ = [0, T ] × ∂Ω.
Since Σ is compact and −vν is positive there, this gives −vν bounded away
from 0 on Σ, say, −vν ≥ c > 0 on Σ. Taking ω̃ = (1/c)ω̃1 and then defining
β = maxΩ ω̃, we have (2.8).

LEMMA 3 Let the region Ω be smoothly bounded and suppose the coeffi-
cients A, q are smooth. Consider any fixed support Ω∗ in the interior of Ω.
If ‖ω‖X is small enough, one then has

|vν | ≤ 1 ≤ B∗ω̃ pointwise on Σ, (2.9)

where ṽ is the solution of (2.1) corresponding to the initial data ω̃ at time T
as in Lemma 2.

Proof: Fixing Ω∗, we may consider X∗ = L2(Ω∗) as a (closed) subspace
of X , extending functions ω on Ω∗ as 0 on Ω \ Ω∗, and note that (2.5) gives
B∗ω in C(Σ) for such ω. Thus, with this restriction, B∗ determines a linear
mapping from X∗ to C(Σ). By the Closed Graph Theorem this mapping is
continuous so there is a constant C — depending, of course, on the particular
choice of Ω∗ — such that

max{| − vν |} ≤ C‖ω‖X∗ = C‖ω‖X .

Then (2.9) holds for ‖ω‖X ≤ 1/C.

LEMMA 4 Let the region Ω be smoothly bounded and suppose the coeffi-
cients A, q are smooth. If ‖ω‖X is small enough one then has

|Sω| ≤ Sω̃ pointwise on Ω. (2.10)
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Proof: By (2.4), v(0, ·) = Sω is in C1(Ω). Since v(0, ·) necessarily
vanishes at ∂Ω, we must have |v(0, x)| ≤ K|x − ∂Ω| where K is a bound
on ∇v(0, ·). Similarly, since (2.8) gives −ṽ(0, ·) ≥ 1 at ∂Ω, we must have
ṽ(0, ·) ≥ |x − ∂Ω|/2 on some neighborhood of ∂Ω so |v(0, ·)| ≤ 2Kṽ(0, ·) on
this neighborhood. Letting Ω∗ be the complement of this neighborhood in
Ω, we have v(0, ·) bounded and ṽ(0, ·) bounded away from 0. Thus, defining

‖v‖‡ = sup
x∈Ω

{|v(x)|/ṽ(0, x)}

= inf
c>0
{c : |v(·)| ≤ cṽ(0, ·)},

we have ‖Sω‖‡ < ∞ for each ω ∈ X . It is easily seen that this ‖ · ‖‡ is a
norm; indeed, this is what is called in [1] the order unit norm with respect to
e = Sω̃. Introducing the Banach space X‡ of functions v ∈ C(Ω) for which
‖v‖‡ is finite, we have shown that S : X → X‡ and (2.10) now follows from
the Closed Graph Theorem as above for (2.9).

3. Answering the questions
In this section we will provide negative answers to the questions raised

in the Introduction. Except as explicitly noted, we assume throughout the
regularity requirements: that ∂Ω and A, q are ‘smooth enough’. We begin
with consideration of Q1.

THEOREM 5 There are always positive target states uT which are bounded
away from all states reachable from u0 = 0 in (1.1) by nonnegative controls
— i.e., B+ is not dense in X+.

Proof: Beginning with the function ω̃ of Lemma 2, we construct an
appropriate function ω ∈ X to use in (2.1), (2.2). Let χε be the characteristic
function of an ε-ball in Ω — i.e., for some fixed x∗ ∈ Ω set

χε(x) =

 β + 1 x ∈ Ωε

0 x ∈ [Ω \ Ωε]
Ωε = {x : |x− x∗| ≤ ε}

for ε > 0 small enough that Ωε ⊂ Ω. Clearly, we have χε → 0 in X as ε→ 0
with supports bounded away from ∂Ω so, by Lemma 3, we can choose ε > 0

7



so that 0 ≤ B∗χε ≤ B∗ω̃ = −ṽν pointwise on Σ. We then set ω = ω̃ − χε

with this choice of ε and have

ω ≤ −1 on Ωε ⊂ Ω, B∗ω ≥ 0 on Σ.

For any u(T, ·) = Bϕ ∈ B+ obtained using a control ϕ ∈ Φ+ for (1.1), one
then has

〈ω, u(T )〉Ω = 〈ω,Bϕ〉Ω = 〈B∗ω, ϕ〉Σ ≥ 0 (3.1)

(whence also 〈ω, u〉Ω ≥ 0 for any u ∈ B+). On the other hand, for any target
0 6≡ uT ∈ X+ with support in Ωε, we have

〈ω, uT 〉Ω = 〈ω, uT 〉Ωε ≤ −
∫
Ωε

uT < 0 (3.2)

This shows that any nontrivial uT ∈ X+ with support in Ωε must be bounded
away from B+ = B(Φ+) so, as asserted, B+ is not dense in X+: nonnegative
targets cannot always be (approximately) reached by using nonnegative con-
trols.

Remark: The regularity requirement on ∂Ω can actually be omitted for
consideration of Q1. We need only consider a smoothly bounded subregion
Ω∗ ⊂ Ω. If some target in L2(Ω) were approximable by a control at ∂Ω, then
its restriction to Ω∗ would be equally approximable by using as boundary
control the trace of that solution at ∂Ω∗. On the other hand, we note that
the result holds for the smoothly bounded Ω∗ so this cannot be possible for
all targets.

We next turn to Q2, whose resolution is almost identical to that above.

THEOREM 6 There are always positive target states uT which are bounded
away from all states resulting at T in the uncontrolled (ϕ ≡ 0) version of (1.1)
from initial states u0 ∈ X+ — i.e., S+ = S(X+) is not dense in X+.

Proof: As in the proof of Theorem 5, we set ω = ω̃ − χε with ε > 0
now chosen so that, following (2.10), we have [S∗χε] (·) ≤ ṽ(0, ·) = [Sω̃](·)
pointwise, making

Sω ≥ 0 on Ω although ω ≤ −1 on Ωε.

As with (3.1), (3.2), we then have 〈ω, u〉Ω ≥ 0 for every u ∈ S+ while
〈ω, u〉Ω < 0 for every nontrivial uT ∈ X+ with support in Ωε. This shows
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that S+ is bounded away from all such targets so, as asserted, S+ is not dense
in X+: nonnegative targets cannot always be approximated by the evolution
of nonnegative initial states.

Finally, we consider Q3. Since u(T, ·) = Su0 + Bϕ (and, for any u0 ∈ X
one can find a nullcontrol ϕ ∈ Φ so this is exactly 0), we ask whether a
target uT ∈ S+ — i.e., of the special form −Su0 with a non-positive ini-
tial state u0 — might always be approximately reachable using nonnegative
controls. Again we obtain a negative answer, although now with a restric-
tion on T . For convenience we also now assume that the equation (1.1) is
autonomous: A, q independent of t in (1.2).

THEOREM 7 For some T∗ > 0 and all 0 < T < T∗ there are always non-
positive initial states u0 for which u(T, ·) is bounded away from 0 uniformly
for all nonnegative controls ϕ used in (1.1) — i.e., S+ is not contained in B+.

Proof: Begin with some (large) T = T̂ and again set ω = ω̃−χε — now
with ε > 0 chosen as in the proof of Theorem 5, so B∗ω ≥ 0 on Σ. From the
Maximum Principle it follows that the solution v of (2.1) is continuous from
[0, T̂ ] to L∞(Ω) so v(t, ·) → ω(·) uniformly on Ω as t → T̂ — whence, since
ω ≤ −1 on Ωε, it follows that for any α ∈ (0, 1) we have v(t, ·) ≤ −α < 0
on Ωε for t in some interval [T̂ − T∗, T̂ ]. Using the assumed autonomy of the
equation, this shows that for T < T∗ we may translate [0, T̂ ] to [T− T̂ , T ] and
have S∗ω = v(0, ·) ≤ −α < 0 on Ωε for this choice of ω, still with B∗ω ≥ 0
on Σ = (0, T )×∂Ω ⊂ (T − T̂ , T )×∂Ω. For any nontrivial initial state u0 ≤ 0
with support in Ωε and any control ϕ ∈ Φ+ we then have

〈ω, u(T )〉Ω = 〈S∗ω, u0〉Ω + 〈B∗ω, ϕ〉Σ
≥ 〈S∗ω, u0〉Ω = 〈S∗ω, u0〉Ωε

≥ α
∫
Ω
[−u0] > 0.

This shows, of course, that for such an initial state every nonnegative control
leaves ‖u(T )‖ greater than α

∫
|u0|/‖ω‖, bounded away from 0 so u0 is not

even approximately nullcontrollable with nonnegative controls.

We remark that, at this juncture, it is not clear whether the restriction
to T ≤ T∗ is a genuine necessity or merely an artifact of our proof. Since B+
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is convex, it is not difficult to see that the conclusion requires existence of
some ω ∈ X for which (2.1) gives −vν ≥ 0 on Σ, but with v(0, ·) < 0 on
some nontrivial (open) subset of Ω. What is not clear is whether, for large
enough T , the requirement that B∗ω ≥ 0 may imply S∗ω ≥ 0. Thus the
possibility of removal of this restriction remains open.
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