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The ‘Output Stabilization’ problem:
a conjecture and counterexample

Thomas I. Seidman'!

IDepartment of Mathematics and Statistics
University of Maryland Baltimore County, Baltimore, MD 21250, USA.

Abstract. ‘Output stabilization’ here refers to feedback which drives the system output
to 0, without concern for the behavior of the full state. Since everything of concern is
automatically observable, it is reasonable to conjecture — subject, of course, to some
controllability hypothesis — that this output stabilization should always be possible by
some kind of feedback from the output, with no necessity for the usual sort of observability
hypothesis. This is true for the finite-dimensional case, but we show, by example, that the
conjecture need not hold in infinite-dimensional contexts.
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1 Introduction

In discussing stabilization or feedback stabilizability of a system, standard
analyses impose hypotheses of observability and controllability, from which
is deduced stabilizability: that the state z(-) of the system is to go to the
stationary point 0 as t — co. We will here heuristically adopt the idea that,
“What we don’t know can’t hurt us” — i.e., any deviation of the state which
‘matters’ to us must necessarily show up by affecting something we observe
so, conversely, any deviation with no observable effects can be neglected as
irrelevant. From this viewpoint, the stabilizability of what we do observe
should be a more appropriate concern than seeking stabilizability of invisible
components of the full state so we have a notion of output stabilization,
meaning that the observable output y should go to 0 without direct concern
for the behavior of the full state x.
Throughout we consider the autonomous linear control system

& =Az+ Bu y=Cuz (1)

with the functions x,u,y taking values in spaces X,U, ), respectively and
with suitable operators A, B, C. We then denote the solution of (1) with
initial data £ = x(0) by = z(;&, u) and the corresponding output y = Cx
by y(+; &, u).
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Quite generally, we call a control system (1) output stabilizable if there
is some mechanism to determine the control w dynamically (causally based
on the observed output) in such a way that, for each initial state &, the
output y(t;&, u) of the controlled system tends to 0 as ¢ — oo. This is
a very weak notion of feedback stabilizability since, at this point, we are
assuming neither that the feedback mechanism is autonomous nor that it
has any particular continuity property.

Remark 1.1 Apart from the restriction there to finite-dimensional spaces,
we note that the output stabilization problem we are considering is not the
similarly named problem of [5] Section 4.4 — which also requires y — 0
but permits full state feedback. Our requirement here is that the control «
must be constructed as a feedback depending only on the observable out-
put ¥y = Cx so this problem corresponds more closely to what is called in
Chapter 6 of [5] the restricted regulator problem (RRP). However, we also
explicitly distinguish our concerns from Wonham’s RRPIS which seeks also
to keep the full state bounded, including its invisible component. Finally, we
note that, in contrast to the thrust of the analyses in [5], we are willing to
impose a strong controllability condition here so as to focus attention entirely
on issues of observability.

On the other hand, the considerations of ‘regional controllability’ in,
e.g., [3], [1] are closely related to our present concerns. |

If we assume some sufficient degree of controllability, then it is reasonable
to conjecture that this output stabilization should always be possible since
the problem formulation ensures that anything which cannot be observed
must be irrelevant to our concerns: it should thus be possible to omit any
observability hypothesis.

Conjecture 1.1 If the system pair [A,B] is open loop stabilizable (a for-
tiori if it is controllable), then there is some causal feedback mechanism:

M : Joutput history] —— [control] = u(-) (2)

which, when coupled with (1), ensures asymptotic stability of the output: that
y — 0 as t — oo for every solution x, i.e., for each choice of the initial
data x(0) = &.

While finite-dimensional results can only be suggestive here, we note that
this conjecture is supported by known results from standard system theory;
compare [5], [4].

Theorem 1.2 Consider the autonomous linear control system (1) with the
functions x,u,y taking values in X = R™ U = R™, and Y = RF, respectively.
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1. If the system pair [A,B] is controllable, then there is an n x n matriz
K such that the ‘feedback’ v = K (assuming the availability of the
full state, effectively taking m = n and C = 1) stabilizes — i.e., every
solution of & = [A + BK]z converges (exponentially) to 0 as t — oo.

2. If the system pair [A, C] is observable, then there is an n x n matriz L,
defining a tracking observer z by coupling

2= (A—-LC)z+Bu— Ly, (3)

with (1), such that the tracking error [z — x| converges (exponentially)
to 0 ast — oo.

3. If both of the above, then the feedback u = Kz with K as in 1. and z as
in 2. stabilizes the system — i.e., every solution of the coupled system

& = A + Bu, u=Kz (@)
2 =(A-LC+BK)z—Ly y = Cuzx

converges (exponentially) to 0 as t — oo.

Note that 3. gives full state stabilization and so, a fortiori, output stabiliza-
tion. Our initial hope is that we may omit the observability assumption in
part 3. of Theorem 1.2 if we forego the state stabilization and seek stabiliza-
tion only of the resulting output.

Corollary 1.3 Conjecture 1.1 holds in the finite-dimensional case:

If we consider (1) with X,U,Y finite-dimensional and the system pair
[A,B] is controllable, then there are matrices K, L such that every output
y(-) of the coupled system (4) converges (exponentially) to 0 as t — co.

PROOF: Consider the quotient X = X' /A where N := {€ : y(t;€,0) = 0}
is the subspace of invisible states: this is invariant under e and there is
a reduced system on X with input/output identical to that of the original
system. Since the definition of N ensures that the this reduced system is
observable, we may apply 3. of Theorem 1.2 to it and get stabilization there,
hence exponentially decaying output. |

While it is well-known how to formulate natural conditions to adjoin so
as to make the hypotheses sufficient for output stabilizability, the conditions
normally used are in terms of observability properties of [A, C] — and the
whole point of Conjecture 1.1 lies in the avoidance of any such explicit ob-
servability hypotheses. As indicated by its title, the point of the present note
is that the infinite-dimensional situation is different: Conjecture 1.1 need not
always hold and our principal result is the presentation in the next section
of an example demonstrating this.
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2 A counterexample

In this section we present our principal result: the failure of Conjecture 1.1
in a general infinite-dimensional context. Since this is a negative result, we
wish to consider it with the weakest form of the conclusion while imposing
the strongest possible hypotheses.

In showing by this example that stabilization by feedback is impossible,
we show impossibility even with the most favorable setting:

1. X,U,Y are Hilbert spaces.
it. A is the infinitesimal generator of a Cjy semigroup S(-).
1ii. B:U — X, and C: X — )Y are bounded operators.
iv. The system (1) is open-loop nullcontrollable, i.e., (5)
for some fixed T' > 0, for each £ € X :
there is a control u(-) € L2([0,T] — U) such that

z(T, & u(-)) =0.

On the other hand, we are willing to permit the weakest interpretation of
‘feedback’, allowing even some (highly artificial) nonlinear, nonautonomous,
discontinuous way of selecting the control, so long as the mechanism used
produces an admissible control for each initial state and is causal — meaning
only that

If y1 = yo on [0,7], then u; = wug on [0, 7] (6)

for arbitrary 7 > 0.

Theorem 2.1 For infinite-dimensional problems the Conjecture 1.1 need not
hold, even adjoining the strong hypotheses (5) and restricting the feedback
mechanism of (2) only by (6).

PROOF: For this negative result it is only necessary to provide a single
example. For our exposition here, we put forward as such a counterexample
the partial differential equation

rr=zs+x+4 fort>0, s>0 with z(0,-) =&(") (7)

so the state x(¢) is a function z(t,-) on Ry = [0,00) and similarly for the
control effect & with the restriction that 4 = Bu(t, -) will vanish on [0, 2].

For an operator representation as in (1), we will take X = L?2(R,), U =
L?(2,00), and Y = L*([0,1]), viewing U as a subspace of X, and

A:E— (49 with domain
D=H'R, - X)={(cX:¢=d/ds € X}.

The control map B will be injection: U — X (extension as 0 on [0,2]) and
the observation map C will be restriction to [0, 1] so

[Bw](s) = w(s) for s > 2, y(t,-) = x(t,-) o
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The partial differential equation (7) is then just the abstract differential equa-
tion: & = Az + Bu of (1) with output y.

We proceed to verify the hypotheses (5) for this system. It is immediate
that X',U,) are Hilbert spaces and that B, C are bounded linear operators.
It is easy to check, for smooth £(-), that z(t,s) = e'&(s +t) gives a solution
of the uncontrolled (7) with v = 0. Thus, A is the infinitesimal generator of
the exponentially weighted left shift semigroup on X':

[S(t)¢](s) = € (s + ). (®)

Finally, we verify the nullcontrollability condition with any 7" > 3. Note that
the mild solution of (7) is given in terms of (8) by

T
z(T,s) = eT¢(T,s +T) + / el "Tu(r, s + T — 1) dr.
0

To have z(T,-) = 0, we must choose the control u — subject to having
u(r,-) € U — so that

T
/ e Tu(r,s+ T —71)dr =—&(T,s+1T). 9)
0
This can be done, for example, by setting

(10)

—eé(o+71) fo>20<7<1
U(T’U){ g(0 : else

soe Tu(r,s+T—71)=—&(T,s+T) for 0 <7 < 1and all s > 0, noting that
this gives s+ T — 7 =0 > 2.
Having verified the hypotheses, it remains now to demonstrate that no

causal feedback can possibly stabilize the output y := = - for (7).

Claim: For every causal feedback map M there is some initial state & for
which the solution of the controlled system — (1) with u = M (y) — fails to
give asymptotically stable output, so y(t) = Cx(t) £ 0 ast — oo.

The argument is conceptually simple, although a bit messy in the details.
We begin with the integral representation

y(t,s) = x(t,s) =e'&(s+1t)+n(t,s) for 0<s<1
1

- 11
with n(t,s) = / e Tu(r, s+t —71)dr. (11)
0

[The upper limit of the integral comes from the observation that we will have
no contribution to y(¢, s) from the control w unless s +¢ — 7 > 2.]
We now consider initial states £(-) € X of the special form

£(s) = {wpe P (s —2k) for 2k <s<2k+2, k=0,1,...} (12)
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where ¢(-) is a suitable (smooth, nontrivial) function with support in (0, 1)
and wy, = £1. [We note that (12) gives [|¢]|? = [|¢[|?/ (1 —e™?) < oo and,
indeed, ¢ is similarly bounded in any HJ(R.) if ¢ is in HJ([0,1]).]

Introducing 9(7,s) := e"p(s + 7), we note that for ¢ € [2k — 1,2k + 1],
s €10,1] (so (s +1t) € 2k — 1,2k + 2]) we have that

el€(s +t) = wpeMy(r, s) (r:=1t—2k) (13)

from our requirement that supp ¢ C (0,1) in (12). By induction we then have
foreach j =1,...:
(*); Yy vyt depends only on (wo, ..., w;j_1),
meaning that, whatever the particular causal feedback mechanism used, the
outputs y, § occurring for initial states f,f will coincide for 0 <t < 25 — 1 if
the first j sign choices (wo,...,wj;—1) in (12) are the same for € as for &.
This is clearly true for j = 1, since (11) gives no contribution n when t < 1
and (13) with ¥k = j — 1 = 0 then gives y in terms of wg. For the induction,
we assume (*); for some j and proceed in two steps. For 2j —1 < ¢ < 2j
the first term in (11) depends (only) on w; by (13) and the second term
depends on u(r,-) only for 7 <t —1 < 25 — 1 — whence, by (6), only on
~_ which depends only on (wy,...,wj—1). Thus, y‘ _ depends only
[0,25—1] (0,25]
on (wo,...,w;). For 2j <t < 2j+4 1 we again have the first term in (11)
depending (only) on w; by (13) and the second term depending on u(7, -) only

for r <t—1<2j — and so, by (6), only on y‘[ | which we have just seen
0,2j

depends only on (wp, ...,w;). Thus, y‘[ | depends only on (wp, . ..,w;),
0,25+

which is (*);41 as desired.
We now let yi, i be the restrictions of y, n, respectively, to ¢t € [2k—1, 2k]

and s € [0,1] and let ¢ be the restriction of 1) to A = [—=1,0] x [0,1]. Tt
follows from our discussion above that 7, depends only on the choices of
(wo, - - - ,wk—1) and, abusing notation slightly to think of y, 7, as functions

of [t =1t — 2k, s] € A, we have from (11) that
Ui = 1 + wie (14)

is in L%(A).

The final argument is then by contradiction: we show that the signs
(wo, .. .) used in (12) can always be chosen so as to produce an initial state £
for which the feedback-controlled output y(t,&, M(y)) does not go to 0 as
t — 0.

For this construction wy is arbitrary — say, wg = +1. Recursively, we then
suppose (wp, - - . ,wr—1) have already been chosen so 7 is already determined
for (14) by (11) and we will have (14) once we choose wy. Denoting by yi-
the alternatives corresponding to the two possible choices wr = 41, we see
from (14) that ||y —y, || = 2¢*||4|, taking norms in L?(A). Thus, regardless
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of the feedback mechanism and the prior choices of (wy,...,wk_1), one (at
least) of the alternatives for wy could be selected so as to give

2k
/ ly(t, )E dt > e ()2 (15)
2k—1

for the output. We recursively make our sequence of choices so (15) holds
for each k; it is clear that, for this initial state, the output does not go to 0
(and, indeed, is not even bounded) as t — oco. This then verifies the Claim
above and so demonstrates that (7) does provide a counterexample to the
Conjecture 1.1. [ |

Remark 2.2 Once one understands the underlying idea of the example used
above for Theorem 2.1:

By the time we have any observational information about
a segment of the state (data corresponding to some spatial (16)
interval), it will be too late to do anything about it.

it is easy to construct similar examples in a variety of ways. For example,
an alternative construction using the same idea would replace (7) by the
equation

Ty =Ts+ U (17)

while modifying the state space to have the w-weighted L?-norm

[} 1/2
el = | [l w(s)as
with, e.g., w(s) = e~®*, similarly modifying the control space U to preserve
the nullcontrollability property. The construction of Theorem 2.1 then pro-
ceeds without any change except the omission of the exponential weighting
factors: e.g., (8) now involves the unweighted left shift semigroup. [One
could not have used such a rapidly decaying weight as w(s) = exp|[—s?] for
the norm since the left shift would then be unbounded.]

It should be clear that the same idea may also be used in the context
of the standard wave equation

Ty = Tgs + U on Ry xR (18)

with, e.g., output given by observation of the restriction of x(t,s) for |s| < 1
and control restricted to |s| > 2. [The state now includes z; as well as x,
but this causes no difficulty.] Once one recalls that solutions of (18) may be
dissected as left- and right-moving waves, one can ignore the invisible waves
which will not pass through the observation interval so this becomes essen-
tially the previous example. |
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3 Further remarks

The negative result of Theorem 2.1 raises the possibility that Conjecture 1.1
must always fail in the infinite-dimensional case, i.e.,

for every [A,B] as in (5), there is some bounded C

such that Congecture 1.1 fails, even subject only to (6). (19)

Remark 3.1 All the examples noted have depended on an interaction be-
tween the geometry and the semigroup evolution in time related to a limi-
tation on the ‘speed of propagation’ within the model. Since time is a con-
tinuous variable, it has been significant, in each case, that the geometry has
had a continuous, ordered structure. On the other hand, since the Hilbert
space L?(Ry) is isometrically isomorphic to the sequence space £2, the ex-
ample of Theorem 2.1 must have an isomorphic image in the sequence space.
Especially since the construction there is really only concerned with a time
sampled description, one should be able to proceed by embedding iteration of
the weighted discrete left shift operator on ¢? in an image of the continuous
semigroup of (8). Unfortunately, there seems not to be any simply described
image of (8) in ¢2, but the existence of such an isomorphism makes it awk-
ward to conjecture that a finite speed of propagation is intrinsic to the failure
of Conjecture 1.1. [ |

We see, however, that the counterconjecture (19) cannot be unrestrictedly
true:

Theorem 3.2 Consider (1) subject to a modified (5) — further assuming in
ii. that the semigroup S(-) is analytic, but weakening iv. to replace the null-
controllability by open-loop stabilizability: existence of some output-stabilizing
control for each initial state. Then, without special consideration of observ-
ability, there is a feedback mechanism M, causal in the sense of (2), (6),
which stabilizes the system output.

PROOF: We need only one such feedback mechanism M — causal, but
without concern for such properties as autonomy, linearity, or continuity. For
example, there is the following:

Letting u vanish on [0, 1], choose any state él consistent with the
observed output, i.e., for spmeé one has

&1 =x(1,£0) =S(1)¢ while y(t,§,0) = y(t) on [0,1].
By assumption, there is some output-stabilizing control iy for the
initial state & so we can now define our control u on [1,00) to be
U1, suitably shifted.

We do not know the true initial state & = x(0), but observe that linearity
gives R R
z(t, & u) = x(t,g,u) + S(t)[§ — €] S0
y(t> 3 u) = y(t7 3 u) + CS(t)[f - ﬂ
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for any control u. Our choice of él ensured the identity
CS(1)é = y(t,£,0) = y(t) = y(t,€,0) = CS(t)¢

for 0 <t <1 and, by the analyticity of S(-), this identity holds for all ¢ > 0.
Thus the output for the system using this control u is just y(¢, &, v) = y(, é, w)
and the relation between &, u and &1, i1 ensures that y(t, é, u) = y(t—1, &, U1)
— which goes to 0 as t — oo by the choice of ;. [ |

Remark 3.3 Comparing Corollary 1.3 with Theorem 2.1, Remark 3.1, and
Theorem 3.2, we note the difficulty of formulating a satisfactory replacement
for (5) as a plausible sufficient consideration for output stabilizability — es-
pecially if one would wish the feedback to have some additional properties of
autonomy and continuity.

A particularly interesting test case for output stabilization of a dis-
tributed parameter system was suggested by E. Zuazua. Consider the usual
wave equation on a disk 2 with Dirichlet boundary control so, open loop,
one has exact nullcontrollability in fixed time 7. Now let the observation
operator C give as output the suitably topologized pair [u,u:] restricted to
some smaller concentric disk w. We might expect that the behavior will be
essentially as in the examples above since the geometry admits trapped waves
within the annulus 2\ w. The role of the restrictions of the state to intervals
[2n,2n 4 1] in Theorem 2.1 might now be played by components of the initial
state approximating these trapped rays, closer and closer to the boundary
(as, e.g., inscribed n-gons with increasing n) so it takes longer and longer
for ‘leakage’ to reach w. The difficulty in analyzing this situation is that we
no longer have the precise separation property which made it comparatively
easy in Theorem 2.1 to keep track of the interactions of control, output, and
initial state. This problem remains open.
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