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Abstract

This paper considers nonlinear perturbations of control systems with
linear dynamics and seeks to analyze whether the approximately reachable
set may be left unchanged by this perturbation. Under suitable conditions
it is shown that this analysis may be reduced to the presumably simpler
analysis of such invariance for a family of affine perturbations. Interest
centers on the context of infinite-dimensional state spaces so the system
may, for example, correspond to a hyperbolic or parabolic partial differ-
ential equation.
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1 Introduction

Reachability results for distributed parameter systems are hard to come by
since, when the state space X is infinite-dimensional, the “standard” approaches
(typically based on such implicit assumptions as local compactness, etc.) may
no longer be applicable. This is especially true for nonlinear systems in a setting
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for which the information available relates only to the approximately reachable
sets for related linear problems. Our concern here is with the extension to this
more general context of a mode of analysis treated in a sequence of earlier papers
[11], [12], [15], [16].

We consider a nonlinear control system given by

ẋ = Ax+ Fx+ Bu, u ∈ UUad(1.1)

with A linear and F a nonlinear operator satisfying some suitable growth condi-
tion. The control operator B need not be linear and we may occasionally write
B(u) to emphasize this; we set WWad := {w = B(u) : u ∈ UUad}.

We wish to consider (1.1) as a “perturbation” of the control problem

ż = Az + Bu, u ∈ UUad(1.2)

omitting the nonlinearity F. For the moment we require only that (1.2) should
have a meaningful solution for each u ∈ UUad and we will consistently denote
this solution by zu. Setting

ZZad := {zu satisfying (1.2) for some u ∈ UUad},(1.3)

part of our interpretation of “meaningful” is that ZZad is to be considered in
some1 Banach space XX of functions on [0, T ] with continuity to X for the eval-
uation map E : z 7→ z(T ) : XX → X so that we can speak about the reachable
set

K0 := EZZad := {Ez : z ∈ ZZad}

as a subset of the state space X .
In considering (1.1), we observe that: for any particular solution x = xu, the

nonlinearity gives Fx as some specific function g. This solution is then also a
solution of an alternate perturbation of the system (1.2):

ẋ = Ax+ g + Bu, u ∈ UUad(1.4)

using the same control u. We will consider the family of affine perturbations
(1.4) with g taken from some given subset GG of a function space VV. The relation,
of course, is that GG is to contain each F[x(·)] as u ranges over UUad in (1.1). Pre-
sumably the reachability analysis for (each of) the affinely perturbed problems
(1.4) should be simpler than that for the original nonlinearly perturbed problem
(1.1). For (1.4), (1.1) we will again be considering solutions in the same space
XX of X -valued functions as we use for the “unperturbed” equation (1.2).

1In general we take XX to be C([0, T ] → X ), which certainly ensures that the evaluation
map E will be continuous. We do note that lesser regularity could be permitted away from
the terminal time — in particular, to allow for the effect of “rough” initial data.
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It will be important for us to consider the relation of (1.1) to (1.2) from the
viewpoint of (1.4). Given a solution z = zu for (1.2), we may write (1.1) as an
equation for y = x− z:

G : z 7→ F(y + z) =: g such that ẏ = Ay + g.(1.5)

For the moment this specification of a “map” G = GF is purely formal but, of
course, we will eventually want to have G : ZZad → GG.

The question we wish to consider is:

(Q) When must a state ξ which is approximately reachable for (1.2) also be
approximately reachable for the nonlinear system (1.1)?

Letting KF ⊂ X denote the reachable set for (1.1) — i.e., the set of values for
ξ = x(T ) as x ranges over solutions of (1.1) with u ∈ UUad — this asks whether
K0 ⊂ K̄F; we note that the complementary inclusion is, in general, much easier
to analyze. More precisely, we are asking:

When can the question (Q) above be analyzed (answered affirma-
tively) by considering the family of (presumably simpler) related
questions for the affine problems (1.4) as g ranges over GG?

In this form it should be clear that our concern is with the validation of a
mode of analysis. We are, for example, seeking conditions on (1.4) for g ∈
GG ensuring that K̄ is invariant under the perturbation: (1.2) 7−→ (1.1). The
essential requirement will be a certain uniformity (over suitable bounded subsets
of GG) for a measure of the approximate reachability; see (3.23) et seq.

We have already investigated the corresponding invariance of the (exactly)
reachable set in a sequence of papers [11], [12], [15], [16]. The work presented
here represents an extension of this work in two directions: the consideration of
approximate rather than exact reachability and the consideration of control sets
which do not form a linear space with linear B.

We further note that our present approach to (Q) is “one ξ at a time”
and so, with minor modification, lends itself to an analysis of approximate
controllability for (1.1) in a less “global” context than the invariance of the
title. The arguments used here put this work in the setting of “the fixed point
approach to controllability” and we refer, e.g., to [5] and its references for further
historical discussion of this approach.

2 Some examples

In this section, before beginning the analysis of reachability, we wish to pro-
vide some representative examples for which one can verify certain general hy-
potheses, (H1) below, as to the settings to which our analysis applies. As
previously noted, our concern is with settings for which the state space X is
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infinite-dimensional so that (1.2) may itself be an abstract formulation of a
partial differential equation. We emphasize that our hypotheses do not restrict
consideration to parabolic equations (compact, analytic semigroups). The anal-
ysis here could, in principle, be applied also to hyperbolic systems — although
one expects that considerations of approximate reachability (compare [15], [17])
might then only be of interest if {B(u) : u ∈ UUad} is not itself a linear space.

We turn now to some specific examples of systems governed by partial differ-
ential equations whose dynamics will satisfy the general hypotheses (H1) below
— but only indicate briefly the verifications. In §6 we will provide, following
[15], some results which are sufficient to provide such verification for more gen-
eral classes of problems. For each of these examples the spatial domain will
be a bounded region Ω ⊂ IRm with “smooth enough” boundary ∂Ω; we set
Q := (0, T )× Ω and Σ := (0, T )× ∂Ω.

Example 1. Our first example already exhibits many of our concerns for
application. Consider boundary control of the nonlinear heat equation:

ẋ = ∆x+ ϕ(·, x,∇x) on Q, xn = eu on Σ(2.6)

as (1.1). The corresponding “linear” control problem is then

ż = ∆z on Q, zn = w on Σ(2.7)

where w := eu. (Note that xn, zn denote normal derivatives at ∂Ω.)
We wish to take X := L2(Ω) as state space. Note that the function f(ξ) :=

ϕ(·, ξ(·), [∇ξ](·)) is not well defined for general ξ ∈ X since the argument ∇ξ
would then only be in H−1(Ω) and so need not be a function at all for pointwise
composition with ϕ. This is a situation for which the considerations of Lemma 3
below are important. If we assume that the scalar function ϕ is (uniformly)
Lipschitzian in its variables ξ,∇ξ, then we can introduce the auxiliary space
YY := L2([0, T ] → H1(Ω)) and have Lipschitz continuity from YY to VV := L2(Q)
for the Nemytsky operator F : x 7→ ϕ(·, x,∇x). Fairly standard methods show
that L is well defined and continuous from this VV to XX and to YY. Further,
if one uses a suitable weighting (exponential in t) for the norms of YY and VV,
then one can arrange that ϑ < 1 so Lemma 3 will apply (provided we can take
ZZ ↪→ XX ∩ YY).

Note that these considerations do not yet involve UUad or ZZad as L relates
only to the problem with homogeneous boundary conditions (and, of course,
homogeneous initial conditions).

Suppose we would wish to consider UUad = {u ∈ L2(Σ) : u > 0 ae}. Clearly
we must begin by restricting this further, to those u (and corresponding w = eu)
for which (2.7) and (2.6) have solutions in some satisfactory sense. If we take
w ∈ WW := L2(Σ), then it is standard that the solution map S defined by (2.7)
is continuous and, indeed, compact from WW to XX ∩YY. One can then take, e.g.,
ZZ := SWW, normed so that S is an isometry. By suitable density arguments one
can show that the XX -closures of the sets of solutions for (2.6), (2.7), and the
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corresponding equation affinely perturbed by arbitrary g ∈ VV will be the same
whether one works with WWad := {w ∈ WW : w ≥ 1 ae} or with the original UUad,
restricted to u giving solutions in XX . Thus one has equivalence in the sense of
(3.17), below. This, together with Lemma 3, gives (H1). We note also that this
ZZad is convex and closed in ZZ since we obviously have WWad convex and closed
in WW.

Example 2. We next consider distributed control of the equation

ẋ = ∆x+ ϕ(·, x,∇x) + w on Q, x = 0 on Σ,(2.8)

assuming that ϕ : Q × IRm+1 → IR is a “nice” function (i.e., with uniform
bounds on enough derivatives). Again, (2.8) can be put into the abstract form
(3.15) by taking the state space X to be X0 = L2(Ω) and then introducing A
as the Laplacian on Ω with domain D(A) := {ξ ∈ H2(Ω) ⊂ X0 : ξ|∂Ω = 0}.
Since −A is self-adjoint and positive, there is no difficulty (e.g., through the
rate of decay of the eigenfunction expansion coefficients) in defining [−A]r for
all r ≥ 0 and we set Xµ := D([−A]µ/2); it is known [7], [8] that Xµ = Hµ(Ω)
for 0 ≤ µ < 1

2 , that Xµ = {ξ ∈ Hµ(Ω) : ξ|∂Ω = 0} for 1
2 < µ < 5

2 , etc.
Consider controls w ∈ WW = WWm := L2([0, T ] → Xm) for (fixed) m ≥ 0. A

standard semigroup estimate2 gives continuity for L[t] : w 7→ x(t) from WWm to
Xµ for each µ < m + 1 and a convolution estimate shows that Lw =: x(·) will
be in L2([0, T ] → Xµ) for µ < m+ 2. We get

x(·) ∈ XX µ := C([0, T ] → Xµ) ∩ L2([0, T ] → Xµ+1)

for each µ < m + 1. On the other hand, for any ξ ∈ Xm+2 we can set
w∗(t) := (ξ − tAξ)/T to get w∗ ∈ WWm and L[t]w∗ = (t/T )ξ. Hence, Xm+2 ⊂
K0(WWm) ⊂ ∩µ<m+1Xm. Any more precise estimate of K0(WWm) would be much
more difficult to obtain — even in this “simple” setting.

In considering the nonlinear partial differential equation (2.8), our assump-
tions make ϕ uniformly Lipschitzian in x,∇x, so a standard (Picard iteration)
argument gives existence of a (unique) solution of the nonlinear equation (2.8)
in XX 0 for, say, any control w ∈ WW0 = L2(Q); compare the proof of Lemma 3
below and the proof of Lemma 4 in [15]. This then gives ϕ(·, x,∇x) =: Fx =:
GFw =: g again in L2(Q) so [g + w] ∈ WW0 and by the analysis above, we then
have x ∈ XX µ for arbitrary µ < 1 and this gives KF ⊂ ∩µ<1Xµ. For smoother
controls one can similarly obtain the regularity result: KF(WWm) ⊂ ∩µ<m+1Xµ

provided one has an estimate of the form:

‖(−A)µ/2Fx‖ ≤ C[1 + ‖(−A)(µ+1)/2x‖](2.10)

2Since A generates an analytic semigroup on X0 one has

‖(−A)rS(τ)‖ ≤ Cτ−r(2.9)

on bounded intervals for r ≥ 0 and with C depending on r and the interval.
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for such µ. The estimate (2.10) follows from the assumed regularity of ϕ while
µ < 1

2 but the boundary conditions then intervene; one will only continue to
have (2.10), at least while µ < 5

2 , provided that, in addition to the bounds on
derivatives for ϕ, one were to require that ϕ(·, 0, ·) = 0 on ∂Ω so x|∂Ω = 0 also
implies [Fx]|∂Ω = 0.

For the nonlinear equation (2.8) there is no longer a simple explicit calcula-
tion to give a useful lower bound for KF(WWm). Taking X = X0, for example, we
have Xm+2 dense in X for arbitrary m so K̄0(WWm) = X and we would similarly
like to show that K̄F(WWm) = X . Under the assumptions we are now imposing,
we can consider, e.g., 1 < m < 3

2 and get

L[T ]g ∈ D(A) = [D([−A]m+1),X ]ϑ ⊂ [K0(WWm,X ]ϑ

with ϑ = m/(m + 1) as parameter for the interpolation spaces, corresponding
to (5.41). Thus, looking ahead, we note that the assumptions of Theorem 5 will
then be satisfied if one further imposes a growth condition on ϕ to strengthen
(2.10) so as to get (6.48) with r < 1/(m+ 1).

Example 3. For our next example we take Ω = (0, 1) ⊂ IR1 and consider

ẋ = x′′ + ϕ(x, x′) on Q := (0, T )× (0, 1),(2.11)
x(·, 0) = u(·), x(·, 1) = 0 on (0, T ).

As above we assume ϕ is uniformly Lipschitzian and take X := L2(0, 1); we now
wish to take

WWad = UUad := {integer-valued step functions on (0, T )}.

We again take YY := L2([0, T ] → H1(0, 1)) and VV := L2(Q). Since we can
“restart” the equations at each of the (finitely many) jumps of u ∈ UUad, there
is no difficulty with the solvability, for each such u, of the various equations:
solutions will be piecewise smooth. Our difficulty is now with the continuity of
the maps and with the desired convexity of ZZad.

Suppose the scalar function ϕ also satisfies a growth condition ϕ(r, s) ≤
a0 + a1|r| so the Nemytsky operator F satisfies |[Fx](t)|X ≤ C0 +C1|x(t)|X , in-
dependent of x′. In this case, a bound on u in, say, L2(0, T ) gives solutions, for
(2.11) and for the corresponding linear equations, in a compact subset of XX and,
using interior regularity, such that the corresponding gradients are in a compact
subset of, say, L2((0, T ) × (a, b)) for any 0 < a < b < 1. It follows, extracting
suitable convergent subsequences for which the gradients are converging point-
wise ae, that if one considers any bounded set in L2(0, T ) then all limits of the
solutions will again be solutions in XX . We now observe (compare Lemma 5)
that the set UUad above and the set WW := H1

0 (0, T ) have the same (sequential)
weak closure in L2(0, T ), i.e., all of L2(0, T ), so the XX -closures of the sets of
solutions (and so the corresponding approximately reachable sets) will be the
same for each of these as for L2(0, T ) — restricted to those u for which there
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are, indeed, solutions in XX satisfying the boundary conditions in a meaningful
sense. It follows that we can take WW ′

ad := WW and ZZ ′ad = ZZ := SWW ′
ad (noting

that we do have continuity and compactness for S : WW → XX ∩ YY) with equiva-
lence in the sense of (3.17). We will have (H1) and the needed convexity if we
work with this ZZad.

Example 4. For our final example we consider a quasi-linear wave equation

ẍ = ∆x+ ϕ(·, x) on Q, x|Σ = u(2.12)

where we assume ϕ is smooth, uniformly Lipschitzian and with a growth condi-
tion |ϕ| ≤ C(1 + |x|)r̄ with r̄ < 1. We assume homogeneous initial conditions:
x(0) = 0 = ẋ(0) and that the controls u ∈ UUad are to be taken smooth enough
to have an extension to Q, again denoted by u, with, say, q := [ü−∆u] ∈ L2(Q).
This will ensure that the solution z = zu of the corresponding form of (1.2)

z̈ = ∆z on Q, z|Σ = u(2.13)

will be in ZZ := C1([0, T ] → L2(Ω) ∩ C([0, T ] → H1(Ω)), using an estimate
obtained by multiplying (2.13) by [z−u], integrating, and applying the Gronwall
Inequality. If we take VV := L2(Q), then a similar estimate shows the continuity
of L : VV → ZZ. Finally, we note that (1.5) becomes

ÿ = ∆y + ϕ(·, y + z) on Q, y|Σ = 0

and a standard contraction mapping argument gives existence of a solution
y ∈ ZZ, using the Lipschitz property of ϕ, with an estimate |y| = O(|z|r̄) where
|y| is the ZZ-norm and |z| is the VV-norm. The compactness of the embedding
ZZ ↪→ VV then completes the verification of the general hypotheses (H1) with the
growth condition (4.28).

We note two particular cases of interest from the viewpoint of reachability:
(1) in the one-dimensional case with UUad consisting of functions vanishing at
one end of Ω and nonnegative at the other, it is known [13] that K0 is dense
in, say, X = L2(Ω) for T large enough; (2) for Ω ⊂ IRm with u ∈ UUad having
support in some small fixed subset Γ ⊂ ∂Ω and/or with T not too large, then
the reachable set will only be some (small) part of X and it is interesting to
ask whether a geometric restriction on the support in Q for ϕ could provide the
hypotheses for invariance.

3 Formulation and notation

We have already introduced the set ZZad of solutions of (1.2) (in some fixed sense)
as the control u ranges over UUad and the (formal) operator E : x 7→ x(T ). We
now also introduce the linear solution operator L:

L : v 7→ x such that ẋ = Ax+ v(3.14)
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(with homogeneous initial conditions) for suitable v(·). Note that (1.2) and (1.4)
have linear dynamics (i.e., linear in z or x although not necessarily in u) while
the dynamics given by the perturbed equation (1.1) are quasi-linear.

We have already made our first basic observation: neither B nor u ∈ UUad

(nor their individual properties) can be relevant to any of (1.2), (1.1), (1.4), but
only w := B(u), considered as an element of some space WW. Indeed, we have
seen that the only really relevant entity is z = zu, the corresponding solution of
(1.2). Thus, the effects of control are entirely determined by the set ZZad.

Expressed in terms of this (formal) operator L, the differential equations
(1.1) and (1.4) then take the abstract forms:

x = LFx+ z (z ∈ ZZad),(3.15)
x = Lg + z (z ∈ ZZad, g ∈ GG),(3.16)

where ZZad is now simply a (specified) subset of some function space ZZ and
GG is a specified subset of another function space VV. Until one specifies the
spaces involved this is purely formal but we note here that, although we refer
for convenience to (1.1), (1.2), (1.4), we will always be interpreting “solution” in
the present sense: through the abstract operator equations (3.15), (3.16) with any
hypotheses and interpretations to be attached to these. Except for this section,
the (motivating) earlier examples, and the final section, our considerations are
independent of any interpretation of (3.15) and (3.16) as differential equations.

Note that, since we consider the equations (1.2), etc., with fixed initial con-
ditions, it is always possible, with no loss of generality, to translate the problem
by some fixed trajectory z0, correspondingly modifying F, ZZad, and all reach-
able sets. Henceforth, for expository simplicity, we do assume that, ab initio,
the problem has been formulated with homogeneous initial conditions so that
one has zu = Lw where w = B(u). At the same time, once one has avoided
consideration of any (essentially irrelevant) problems with regularity near the
initial time, it is convenient to assume that all our solutions are elements of the
fixed space XX := C([0, T ] → X ) so that, in particular, the operator E : XX → X
is always well defined and continuous. We also assume that ZZad ⊂ XX set-
theoretically, but may find it convenient to topologize it somewhat differently:
as ZZad ⊂ ZZ; e.g., if there is a continuous embedding ZZ ↪→ XX .

Our underlying set of “solvability hypotheses” is:

(H1) Let each of the following hold:

(i) Equation (3.14) has a (unique) solution x = Lv ∈ XX for each
v ∈ VV; the linear map L is well-defined and continuous from
VV to XX .

(ii) For each z ∈ ZZad there is a unique solution x of (3.15) and
we assume that g = Fx is in VV, i.e., there is a well-defined
(nonlinear) map G = GF : ZZad → VV : z 7→ g which we
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assume is continuous. By (i) we then have x ∈ XX for the
solution x of (3.15).

(iii) The map G : ZZad → VV is compact.

Compare (1.5) for the definition of the map G. In §4 we will consider some
specific examples involving partial differential equations and some classes of
settings for which these abstract hypotheses can be verified.

Having formulated the “dynamics” of the problem — introducing the rel-
evant spaces and the operators L and GF to obtain (3.15), (3.16) — we next
wish to consider the various reachable and approximately reachable sets. We
now define L[t] : v 7→ [Lv](t) (so, in particular, EL = L[T ]) and set

T = TF := L[T ]G + E : ZZad → X : z 7→ ξ := Ex such that (3.15).

Clearly, in view of (H1), the operator T is continuous. If, for arbitrary ZZ∗ ⊂ ZZ,
we define:

KF(ZZ∗) := {Ex : (3.15) for z ∈ ZZ∗} = {TFz : z ∈ ZZ∗},
K0(ZZ∗) := EZZ∗ := {Ez : z ∈ ZZ∗},
Kg(ZZ∗) := {(L[T ]g + Ez) : z ∈ ZZ∗} = L[T ]g +K0(ZZ∗),

then the (exactly) reachable sets for (1.2), (1.1), and (1.4) will be K0 = K0(ZZad),
KF = KF(ZZad), and Kg = Kg(ZZad), respectively. The corresponding approx-
imately reachable sets are then the X -closures: K̄0, K̄F, K̄g, respectively (i.e.,
K0(ZZad), etc.). We make here our second basic observation: for present pur-
poses we may always replace the “original” ZZad at our convenience with any
other set ZZ ′ad for which the approximately reachable sets are the same:

K̄0(ZZ ′ad) = K̄0(ZZad), K̄g(ZZ ′ad) = K̄g(ZZad), K̄F(ZZ ′ad) = K̄F(ZZad).(3.17)

In particular, the continuity of G assumed in (H1)(ii) will mean that we can
always take ZZad closed, i.e., replacing it by its closure with no loss of generality.
As part of this observation we also note that ZZad — or, equivalently, ZZ ′ad

satisfying (3.17) — is of purely set-theoretic significance so the relevant topology
is at our convenience.

It is sometimes convenient to introduce explicitly the intermediate space
WW such that B(u) ∈ WWad ⊂ WW so ZZad = SWWad and to consider the map:
u 7→ w := B(u) 7→ z = zu defined by (1.2). The second “factor” of this is the
(linear) solution map for (1.2):

S : WW → ZZ : w 7→ z(3.18)

and we now write WWad ≡ WW ′
ad if ZZad := SWWad and ZZ ′ad := SWW ′

ad are equiva-
lent in the sense of (3.17).
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In our previous work we assumed, with GG∗ = VV, that the exactly reachable
set for (1.2) was invariant under all the affine perturbations (1.4) for g ∈ VV, i.e.,
that

Kg = K0 for each g ∈ GG∗.(3.19)

The natural reachability condition for us to consider in attempting a corre-
sponding treatment of approximate controllability would seem to be

K̄g = K̄0 for each g ∈ GG∗(3.20)

but we will need to strengthen half of this, the inclusion

K0 ⊂ K̄g,(3.21)

to obtain the desired result. Suppose, given ξ ∈ X and ε > 0, we introduce the
set-valued function C(·) = C(·; ξ, ε) defined on VV by

C(g; ξ, ε) := {z ∈ ZZad : |ξ − [L[T ]g + Ez]|X ≤ ε}.(3.22)

Then (3.21) just means that C(g; ξ, ε) is nonempty for each ξ ∈ K0 and each
ε > 0. Fixing ξ ∈ K0 and ε > 0, we now set

ν(g) = ν(g; ξ, ε) := inf{|z|ZZ : z ∈ C(g; ξ, ε)}(3.23)

for g ∈ VV and then, for R > 0, define

β(R) = β(R; ξ, ε) := sup{ν(Gz; ξ, ε) : z ∈ ZZad, |z|ZZ ≤ R}(3.24)

To have each ν(g) finite (for ε > 0 and g ∈ GG∗) just means that ξ ∈ K̄g (for each
g ∈ GG∗) so (3.21) means that ν(g; ξ, ε) < ∞ for each ε > 0 and every ξ ∈ K0.
This does not yet mean that β will be finite and we will express the desired
strengthening of (3.21) quantitatively in terms of ν(·) and β(·).

Returning to the condition (3.20), we finish this section with some observa-
tions about the structure of the set VVa = VVa(ZZad) given by

VVa := {g ∈ VV : K̄g = K̄0} = {g ∈ VV : L[T ]g + K̄0 = K̄0},(3.25)

noting that (3.20) just asserts that GG∗ ⊂ VVa. Since we always assume L[T ] is
continuous, we always have VVa closed in VV.

Lemma 1. VVa is closed under addition and subtraction. If K̄0 is convex,
then VVa is a (closed) subspace of VV.

Proof. Suppose g, g′ ∈ VVa. We first wish to show that Kḡ ⊂ K̄0 where ḡ :=
g−g′, i.e., for any ξ̄ ∈ Kḡ and ε > 0 that there exists z̄ ∈ ZZad with |ξ̄−Ez̄| ≤ ε.
To start, we have ξ̄ = L[T ]ḡ + Ez0 = ξ1 − L[T ]g

′ with ξ1 := L[T ]g + Ez0.
Since ξ1 ∈ Kg and g ∈ VVa gives Kg ⊂ K̄0, there must be z1 ∈ ZZad such that
|ξ1 − Ez1| ≤ ε/2. Now Ez1 ∈ K0 and g′ ∈ VVa gives K0 ⊂ K̄g′ = L[T ]g

′ + K̄0 so
(Ez1−L[T ]g

′) ∈ K̄0 and there must be z̄ ∈ ZZad with |[Ez1−L[T ]g
′]−Ez̄| ≤ ε/2.
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Since ξ̄ − Ez̄ = (ξ1 − Ez1) + (Ez1 − [L[T ]g
′ + Ez̄]), this gives |ξ − Ez̄| ≤ ε as

desired so ξ̄ ∈ K̄0. This shows L[T ]ḡ + K0 ⊂ K̄0 for ḡ = g − g′. Reversing the
roles of g, g′ gives −L[T ]ḡ +K0 ⊂ K̄0 or K0 ⊂ K̄ḡ. Combining gives K̄0 = K̄ḡ so
ḡ ∈ VVa for ḡ = g − g′ ∈ VVa −VVa, i.e., VVa is closed under subtraction. Trivially,
0 ∈ VVa so g′ ∈ VVa gives −g′ ∈ VVa whence ḡ = g − (−g′) = g + g′ is in VVa for
g, g′ ∈ VVa, i.e., VVa closed under addition also.

If we only show that convexity of K̄0 implies that of VVa, then the algebraic
closure above shows that VVa is a subspace. Suppose, then, ḡ is any convex
combination of VVa so ḡ =

∑
cjgj with cj > 0,

∑
cj = 1, gj ∈ VVa. For any

ξ ∈ K0 we have L[T ]ḡ + ξ =
∑
cj(L[T ]gj + ξ). As each gj ∈ VVa we have

each (L[T ]gj + ξ) ∈ K̄0 so convexity of K̄0 gives (L[T ]ḡ + ξ) ∈ K̄0. This, for
each ξ ∈ K0, gives Kḡ ⊂ K̄0. By Lemma 1 we have also −ḡ =

∑
cj(−gj)

a convex combination of VVa so [L[T ](−ḡ) + ξ] ∈ K̄0 for each ξ ∈ K0, i.e.,
ξ ∈ [L[T ]ḡ + K̄0] = K̄ḡ. Combining gives K̄0 = K̄ḡ so ḡ ∈ VVa. 2

Note that closure under addition shows that VVa is always unbounded (except
for the trivial case: VVa = {0}), so ZZad must then also be unbounded. Note that
K̄0 will certainly be convex if ZZad is convex.

4 Reachability

At this point we begin our analysis of approximate reachability by proving the
trivial part of invariance: if, for each affine perturbation by g ∈ GG∗ := GZZad in
(1.4), one can reach no state which is not already approximately reachable for
(1.2), then the nonlinear perturbation (1.1) can also produce no new reachable
states.

Lemma 2. Assume (H1)(ii) and the reachability inclusion

Kg ⊂ K̄0 for each g ∈ GG∗,(4.26)

i.e., ξ + L[T ]g ∈ K̄0 for ξ ∈ K0, g ∈ GG∗. Then K̄F ⊂ K̄0.
Proof. Since K̄F = ∩ε>0[KF + Bε] with Bε := {ξ ∈ X : |ξ| < ε}, we have

ξ ∈ K̄F if and only if for each ε > 0 there is some ξε = Tzε ∈ KF with |ξε−ξ| < ε.
Setting gε := Gzε, we then have Tzε = L[T ]gε + Ezε so ξε ∈ Kgε . This shows
that we always have

K̄F ⊂
⋂
ε>0

⋃
g∈GG∗

[Kg + Bε] =
⋂
ε>0

 ⋃
g∈GG∗

Kg

 + Bε

 .(4.27)

Now, if one has (4.26), then the right side of (4.27) will be in ∩ε>0[K0+Bε] = K̄0

as asserted. 2

For comparison we note that our previous work [11], [12], [15], [16] obtained
essentially the following result.
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Theorem 1. Let ZZad = ZZ be a Banach space3 and assume (H1) together
with the growth condition

|GFz|VV ≤ C0 + C1|z|r̄ZZ .(4.28)

for some r̄ < 1. Assume the reachability invariance (3.19): Kg = K0 for each
g ∈ VV. Then KF = K0, i.e., the exactly reachable set is then invariant under
the perturbation by F.

(Of course this implies invariance of the approximately reachable set: we
also have K̄F = K̄0.)

Proof. We only sketch the proof here to fix the ideas; for details, see [15].
From the inclusion Kg ⊂ K0, we can argue as in Lemma 2 to have KF ⊂ K0.
The principal effort must go into showing that one also has the reverse inclusion
K0 ⊂ KF.

The proof begins by noting equivalence of (3.19) to the range condition

L[T ]VV ⊂ EZZ.(4.29)

Then the nullspace of the continuous linear map:

[g, {z}] 7→ L[T ]g + Ez : VV × [ZZ/N (E)] → X

will be the graph of a linear operator: g 7→ {z} which is bounded by the Closed
Graph Theorem. By the Michael Selection Theorem [10], there is a continuous
right inverse to the canonical projection: z 7→ {z} : ZZ → [ZZ/N (E)] which may
be taken to be of linear growth.

Composing, for any fixed ξ ∈ K0, there is a continuous selection C = Cξ :
VV → ZZ satisfying

L[T ]g + E[Cg] = ξ(4.30)

and a linear growth condition: |Cg|ZZ = O(|g|VV). It is an important point that
C depends only on the range inclusion (4.29) and not at all on F.

We then consider the map: ZZ → ZZ given by

CGF : z 7→ g := GFz 7→ ẑ := Cg(4.31)

and note that this can be restricted to an invariant ball by using the linear
growth of C and the sublinear growth condition (4.28). Using (H1)(iii), the
Schauder Fixpoint Theorem applies to give the desired result since using a
fixpoint ẑ of CξG in (3.15) just gives TFẑ = ξ. 2

Our intention here is to use, for the analysis of the approximately reachable
set, a modified version of the argument used above for the exactly reachable set.
We already have Lemma 2 and have noted that the real problem is to determine

3In the previous papers UUad = UU was a Banach space with B linear. The modification to
the present formulation requires no essential change in the ideas at this point since we can
topologize ZZ by identification with UU/N (B) when B is linear.
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when K̄0 ⊂ K̄F, which is just the question (Q) of the Introduction. It is not
difficult to see, much as for (4.27), that we have

K̄F =
⋂
ε>0

{ξ ∈ X : Φ(ξ, ε) 6= ∅}(4.32)

where Φ(ξ, ε) := {z ∈ ZZad : z ∈ C(Gz; ξ, ε)}. Our argument, then, is to show
that the set-valued map: z 7→ C(Gz; ξ, ε) has a fixpoint (so Φ(ξ, ε) is nonempty)
for ξ ∈ K0 and all ε > 0. We take the inclusion K0 ⊂ K̄g of (3.20) as a starting
point but, again as noted, we will be forced to strengthen this.

The critical difficulty with this program is that (4.29), with ZZad a Banach
space, was essential for the applicability of the theorems used above to obtain the
essential continuity and linear growth for Cξ and so, with the growth condition
(4.28), existence of an invariant ball for the mapping CξGF. The various results
in this paper correspond to ways of handling this difficulty.

We have already made our third basic observation: for present purposes
we may not only fix ξ (arbitrary ξ ∈ K0) but also ε (arbitrary ε > 0): now
considering C = Cξ,ε : GG → ZZad, we weaken (4.30) to require only that

Cξ,ε(g) ∈ C(g; ξ, ε) so |ξ − (L[T ]g + E[Cg])|X ≤ ε.(4.33)

One easily sees that having C(g; ξ, ε) nonempty (for each ξ ∈ K0 and each ε > 0)
is precisely equivalent to the inclusion K0 ⊂ K̄g. Given this and the compact-
ness of GF, it is not too difficult to construct C = Cξ,ε continuous giving (4.33)
for each g ∈ GG∗. Unfortunately, without strengthening this condition we cannot
obtain a growth rate for C = Cξ,ε which, with (4.28), would give a bounded in-
variant set. (Under the strong assumption that EGG∗ is known to be precompact
in X , we do, however, have Theorem 6, below.) Our basic approach is embodied
in the following theorems.

Theorem 2. Assume (H1). Let ZZad be convex and, for some ξ ∈ X and
ε > 0, assume that there is some R = R(ξ, ε) such that

β(R; ξ, ε) < R.(4.34)

Then there is some z̄ ∈ ZZad (with |z̄| ≤ R) such that |ξ −TFz̄| ≤ 2ε.
Proof. By (H1) we have G, L, TF continuous so there is no loss of generality

in taking ZZad closed in ZZ (i.e., replacing it by its closure). Now define

ZZ
R

:= {z ∈ ZZad : |z| ≤ R}, GG
R

:= GZZ
R

= {Gz : z ∈ ZZ
R
}.(4.35)

Note that (i) ZZ
R

is closed and convex in ZZ, (ii) GG
R

is precompact in VV by
(H1)(iii), and (iii) C

R
(g) := ZZ

R
∩ C(g; ξ, ε) is nonempty for each g ∈ GG

R
since

ν(g) ≤ β(R) < R. By (ii), we can find a finite set of “centers” {gj : j = 1, · · · , J}
such that

min
j
{|g − gj |} ≤ δ := ε/2‖L[T ]‖ for each g ∈ GG

R
(4.36)
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and by (iii), we can find zj ∈ CR
(gj) for each j. A standard construction gives

a continuous partition of unity subordinate to the covering of GG
R

by 2δ-balls
centered at {gj}, i.e., continuous scalar functions ϕj on VV such that

ϕj ≥ 0,
∑

ϕj(g) = 1 for g ∈ GG
R
, ϕj(g) > 0 =⇒ |g − gj | ≤ 2δ.

We now define C = Cξ,ε by

Cg :=
∑

ϕj(g)zj

and note that this gives C : GG
R
→ ZZ

R
since ZZ

R
is convex. Clearly C is

continuous and, as each zj ∈ C(gj), a simple computation from (3.22) gives

|ξ − [L[T ]g + ECg]|X ≤ 2ε for each g ∈ GG
R
.(4.37)

From (H1) we have CG : ZZ
R
→ ZZ

R
continuous and compact so, applying the

Schauder Fixpoint Theorem, there is a fixpoint z̄ ∈ ZZ
R
, i.e., we have Cḡ = z̄

for ḡ = Gz̄. Putting g = ḡ gives L[T ]g + ECg = L[T ]Gz̄ + Ez̄ =: TFz̄ so (4.37)
gives |ξ −TFz̄| ≤ 2ε as desired. 2

Theorem 3. Assume (H1) with (4.28) and that ZZad is convex. Now suppose,
for some ξ ∈ K0 and each ε > 0, that one has a growth rate

ν(g) ≤ C̃0 + C̃1|g|r̃VV for g ∈ GG∗(4.38)

with r̃ < 1/r̄. (Here, ν is defined as in (3.23); the numbers C̃0, C̃1, r̃ may depend
on ξ, ε.) Then one has ξ ∈ K̄F.

Proof. Substituting (4.28) in (4.38) gives

β(R) ≤ C̃0 + C̃1[C0 + C1R
r̄]r̃ = O(Rr̄r̃) = o(R)

as r̄r̃ < 1. Hence one can always find R = R(ξ, ε) for which β(R) < R so
Theorem 2 applies. 2

Note that if we have this for every ξ ∈ K0 and also have the hypotheses of
Lemma 2, then we have shown, as in the title, invariance of the approximately
reachable set under the nonlinear perturbation F, i.e., K̄F = K̄0.

The condition (4.28) is the same growth condition for the nonlinearity as was
imposed in Theorem 1. Note also that the condition (4.38) implies, in particular,
that ν is finite and so quantitatively strengthens the simple requirement of
approximate reachability for each (1.4):

ξ ⊂ K̄g = L[T ]g + K̄0 for each g ∈ GG∗ := {GFz : z ∈ ZZad}(4.39)

which, for every ξ ∈ K0, would just be (3.21). We can also use this approach
— more-or-less unchanged, with proper formulation — in a somewhat more
complicated nonlinear setting in which the linear operator A is also taken to
depend on x, u. Without developing this further at the present time, we provide
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the formulation here in the hope that it will also add to the reader’s insight into
the essential aspects of the original argument above. Clearly one might continue
to extend the same basic ideas.

We now suppose that we wish to analyze approximate reachability for an
equation of the form

ẋ = A(x, u)x+ f(x, u) + Bu, u ∈ UUad(4.40)

by comparison with similar considerations for the family of (presumably simpler)
equations (1.4); now, A ranges over a suitable set AA of linear operators and g
ranges over GG. As above, we assume that A(xu, u) ∈ AA and f(xu, u) ∈ GG for
each solution xu of (4.40) as u ranges over UUad and that that solutions are here
also taken in XX := C([0, T ] → X ) where X is the state space. We assume that
there are well-defined maps

M : UUad → AA : u 7→ A(xu, u),
L[T ] : UUad ×AA× GG → X : [u,A, g] 7→ xu(T )

given by (4.40) and (1.4), respectively. We will take UUad to be a convex subset
of a suitable Banach space and take AA, GG to be compact Hausdorff spaces; we
assume the topologies can be taken so that L[T ] and M are continuous. Much
as before, we then introduce

C(A, g; ξ, ε) = {u ∈ UUad : |ξ − L[T ][u,A, g]| < ε},
ν(A, g; ξ, ε) = inf{|u| : u ∈ C(A, g; ξ, ε)},

R(ξ, ε) = sup{ν(A, g; ξ, ε) : A ∈ AA, g ∈ GG}.

For ν(A, g; ξ, ε) to be finite just means that C(A, g; ξ, ε) is nonempty and this
will be the case, for the given ξ ∈ X and every ε > 0, if and only if this ξ is
approximately reachable for (1.4) using this A ∈ AA. This, of course, would
not be sufficient in itself to ensure finiteness of R(ξ, ε) unless, for example, one
were to know that ν(·; ξ, ε) would be upper semicontinuous on the (assumed)
compact set AA× GG.

Theorem 4. Let the setting be as assumed above and suppose, for some fixed
ξ ∈ X , that we have R(ξ, ε) < ∞ for each ε > 0. Then this ξ is approximately
reachable for (4.40).

Proof. Choose some R > R(ξ, ε) and restrict attention to the ball UUR :=
{u ∈ UUad : |u| ≤ R}. We can then construct a continuous map C = Cξ,ε :
[AA× GG] → UUR such that, corresponding to (4.33), we have

|ξ − L[T ][C(A, g),A, g]|X ≤ 2ε

for each [A, g] ∈ AA × GG. We omit detail since this is much as in the proof of
Theorem 2 — what corresponds to (4.36) is that we can find, for each [A, g],
a control ũ ∈ UUR ∩ C(A, g; ξ, ε) and then a neighborhood N = N (A, g) on
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which the continuous function L[T ][ũ, ·] varies by no more than ε in X -norm;
there is then a finite subcovering by such neighborhoods, and one can find a
corresponding partition of unity.

Note that the continuity of G and the compactness of AA × GG make the
composition CG a continuous, compact selfmap of the bounded convex set UUR.
The Schauder Fixpoint Theorem applies to ensure a fixpoint û for which (4.40)
gives |ξ−xû(T )| ≤ 2ε. This, for each ε > 0, ensures the approximate reachability
of this ξ for (4.40). 2

5 Further results

Having verified (H1), the principal problem in applying the general results above
is, of course, the difficulty in verifying a condition such as (4.38) to enable
one to restrict attention to some ZZ

R
. There are, however, certain cases in

which one can proceed. We note one in which ZZad is the whole Banach space
ZZ and another in which the nonlinearity F gives only a compactly restricted
perturbation of the final value.

Since we only consider ν(g; ξ0, ε) for ξ0 ∈ K0 so ξ0 = Tz0, we can introduce

ν̄(ξ̄; ε) := inf{|z′| : z′ ∈ [z0 −ZZad], |ξ̄ −Tz′| ≤ ε}

and have ν(g;Tz0, ε) = ν̄(L[T ]g, ε). Observe that if we consider ZZad = ZZ, then
scaling gives ν̄(λξ̄, ε) = λν̄(ξ̄, ε/λ) so (4.38) is equivalent to requiring that

νϑ
∗ (ξ̄) := lim sup

ε→0
{inf

z
{ε−(1−ϑ)|z| : z ∈ ZZ and |ξ̄ −Ez|X ≤ ε}}

should be bounded for ξ̄ ∈ {L[T ]g : g in some VV-bounded subset of GG∗}. It is
possible to show that νϑ

∗ is actually a norm intermediate between the X -norm
on K̄0 (ϑ = 0) and the obvious induced norm: |ξ|1 := inf{|z| : Tz = ξ} on K0

(ϑ = 1). Thus, finiteness of νϑ
∗ (L[T ]g) is a stronger condition than just requiring

L[T ]g ∈ K̄0 but is weaker than the exact reachability condition of Theorem 2,
i.e., that L[T ]g ∈ K0. We will not analyze νϑ

∗ directly but will, instead, use the
established theory Banach space interpolation (cf., e.g., [4]).

Theorem 5. Suppose ZZad = ZZ so K̄0 =: X0 is a ( closed) subspace of X .
Assume (H1) and suppose4 that, for some ϑ > 0, one has

L[T ]g ∈ Xϑ for each g ∈ VV(5.41)

where Xϑ is an interpolation space [X0,X1]ϑ with X1 := K0 (taken with the
norm: |ξ|1 := inf{|z| : Ez = ξ for ξ ∈ X1 = K0}; note that here |z| is the

4Given F, the hypothesis (5.41) with ϑ > r̄ is somewhere between taking ϑ = 0, which just
reduces to the (inadequate) hypothesis (4.39), and taking ϑ = 1 which is equivalent to the
exact reachability inclusion (4.29) used in Theorem 1. Note that it is easiest to obtain (5.41)
if one takes VV as small as possible consistent with (H1).
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ZZ-norm) and X0 := K̄0 with the X -norm. Let F be a nonlinearity satisfying the
growth condition (4.28) for some r̄ < ϑ. Then the approximately reachable set
K̄F is precisely K̄0.

Proof. Since (5.41) gives L[T ]VV ⊂ X1 ⊂ X0 and these are subspaces, we have
(4.26) so K̄F ⊂ K̄0 by Lemma 2. As usual, we are primarily concerned with the
complementary inclusion.

While there are various possible interpolation functors, the extremal prop-
erty of the K-functor (see, e.g., Theorem 3.9.1 of [4]) gives a uniform estimate:

s−ϑK(s; ξ) ≤ C|ξ|ϑ (s > 0, ξ ∈ Xϑ)(5.42)

(C depending on the choice of | · |ϑ) where the function K(·) is defined by

K(s; ξ) := inf{|ξ0|X + s|ξ1|1 : ξ0 + ξ1 = ξ, ξ1 ∈ X1}(5.43)
= inf{s|z|+ |ξ −Ez| : z ∈ ZZ}.

Fixing ε > 0, define

ω(ν) = ω(ν; ε) := [C ε−(1−ϑ)]1/ϑ ν1/ϑ.

For any ξ ∈ Xϑ set ν := |ξ|ϑ and consider s = ε/ω in (5.42), (5.43) with
ω > ω(ν).

From (5.42) this gives K(s; ξ) < ε so, from (5.43), there exists z ∈ ZZ such
that

|ξ −Ez| < ε, |z| < ω.

(Here the first is the X -norm while the second is the ZZ-norm.) Since we may
take ω arbitrarily close to ω(ν), this shows:

inf{|z| : |ξ −Ez| ≤ ε} ≤ [Cε−(1−ϑ)]1/ϑ|ξ|1/ϑ
ϑ(5.44)

for ξ ∈ Xϑ.
Note that (5.41) implies, by the Closed Graph Theorem, continuity of L[T ]

as a linear operator from VV to Xϑ, i.e., existence of a constant C̄ such that
|L[T ]g|ϑ ≤ C̄|g| (|g| is the VV-norm). Now fix ξ0 = Ez0 ∈ K0 = X1 and, letting
ξ = L[T ]g in (5.44), note that |ξ −Ez| ≤ ε if and only if

|ξ0 − [L[T ]g + E(z0 − z)]|X ≤ ε so z0 − z =: z′ ∈ C(g; ξ0, ε).

From (5.44), any ω > ω(|L[T ]g|ϑ) can be used to estimate z′ so

ν(g; ξ0, ε) = inf{|z′| : z′ = z0 − z ∈ C(g; ξ0, ε)}(5.45)
≤ |z0|+ inf{|z| : z0 − z ∈ C(g; ξ0, ε)}
≤ |z0|+ [Cε−(1−ϑ)]1/ϑ[C̄|g|]1/ϑ

We recognize this as (4.38) with r̃ = 1/ϑ; the assumption ϑ > r̄ gives r̃ < 1/r̄.
Thus Theorem 3 applies to show K0 ⊂ K̄F and one has the desired invariance:
K̄F = K̄0. 2
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Corollary. Suppose VV0 is any space for which L[T ] : VV0 → X is continuous
and VV1 is any space for which the exact reachability condition holds: {L[T ]g :
g ∈ VV1} ⊂ K0. Assume (H1) with VV taken as VVϑ := [VV0,VV1]ϑ for some ϑ > r̄;
assume (4.26) and (4.28). Then one has K̄F = K̄0.

Proof. Let L0
[T ] be L[T ] : VV0 → X0 := K̄0 and let L1

[T ] be L[T ] : VV1 → X1 :=
K0; the latter is bounded by the Closed Graph Theorem since L[T ]VV1 ⊂ X1.
Then boundedness of Tϑ : VVϑ → Xϑ := [X0,X1]ϑ follows from interpolation
theory [4] and Theorem 5 applies. 2

A somewhat modified fixpoint argument provides our final result.
Theorem 6. Assume (H1)(i),(ii) and (4.26). Let ZZad be convex and closed

in ZZ and assume we have (3.21) for each g ∈ GG∗ := {GFz : z ∈ ZZad}. Finally,
we assume that L[T ]GG∗ := {L[T ]GFz : z ∈ ZZad} is precompact in X . Then, one
has K̄F = K̄0.

Proof. By Lemma 2 we have K̄F ⊂ K̄0 and, as earlier, need only show ξ ∈ K̄F

for each fixed ξ = ξ0 ∈ K0.
Note that (3.21) just means that [ξ0−L[T ]g] ∈ K̄0 and this, for each g ∈ G∗,

means [ξ0 − L[T ]G∗] ⊂ K̄0. As K̄0 := EZZad is convex, since ZZad is and E is
linear, we have X∗ := co(ξ0 − L[T ]GG∗) ⊂ K̄0. On the other hand, we note that
X0 := co(L[T ]GG∗) is convex and is compact by the precompactness assumption
so X∗ is compact since we easily see X∗ := ξ0 −X0.

Given any ε > 0, one can then find a finite covering of X∗ by ε-balls which
may be taken centered at {ξj : j = 1, · · · , J} with each ξj ∈ K0 ∩ X∗ so there
exist zj ∈ ZZad such that Ezj = ξj . As in the proof of Theorem 2,we can find a
continuous partition of unity subordinate to this covering:

ϕj ≥ 0,
∑

ϕj ≡ 1 on X∗, ϕj(ξ) 6= 0 =⇒ |ξ − ξj | < ε.

and then define C = Cε by

Cξ :=
∑

ϕj(ξ)zj ,

noting that Cξ ∈ ZZad for ξ ∈ X∗ by the assumed convexity of ZZad. Clearly
C : X∗ → ZZad is continuous and, as earlier, a simple computation shows that

|ξ −ECξ| ≤ ε for ξ ∈ X∗.(5.46)

As already noted, for any z ∈ ZZad we have [ξ − L[T ]Gz] ∈ X∗ so the map:

ξ 7→ z := Cξ 7→ [ξ − L[T ]Gz](5.47)

is a continuous selfmap of the compact, convex set X∗.
By the Schauder Fixpoint Theorem this map has a fixpoint ξ̄ so, setting

z̄ := Cξ̄ ∈ ZZad we have ξ̄ = ξ − L[T ]Gz̄. Using (5.46), we have |ξ − TFz̄|X =
|ξ − [L[T ]Gz̄ + Tz̄]|X = |ξ̄ − Ez̄|X ≤ ε. Since this is possible for each ε > 0, we
have ξ ∈ K̄F ⊂ K̄F. Since that holds for each ξ ∈ K0, we have K̄0 ⊂ K̄F. 2
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6 Approaches to the hypotheses

Finally, we consider the verification of the abstract hypothesis (H1) for more
concrete settings — e.g., such as those presented in §2. We begin by noting that
in connection with (H1) (ii), (iii) there may be an advantage in introducing an
auxiliary function space YY.

Lemma 3. Suppose ZZ embeds continuously in a space YY which is compatible
with XX in the sense that the set YY ∩ XX is dense both in YY and in XX with

yk ∈ YY ∩ XX , yk
YY→ ŷ, yk

XX→ x̂ =⇒ ŷ = x̂ ∈ YY ∩ XX .

Assume that, in addition to (H1)(i), the linear operator L is continuous from VV
to YY and that the nonlinear map F is Lipschitzian from YY to VV with Lipschitz
constant C such that C‖L‖VV→YY =: ϑ < 1. Then:

(i) One has (H1)(ii) with GF Lipschitzian.

(ii) If (in addition to the original hypotheses) one has a growth condition

|Fy|VV ≤ a0 + a1|y|r̄YY(6.48)

for F, then GF satisfies the growth condition (4.28).

(iii) If (in addition to the original hypotheses) one has

{F(Lg + z) : g ∈ GG0, z ∈ ZZ0} precompact in VV(6.49)
for each compact subset GG0 ⊂ VV,

then GF(ZZ0) is precompact in VV. (Note that if (6.49) holds for each bounded
subset ZZ0 of ZZ, then (iii) gives (H1)(iii); a sufficient condition for this, in view
of (i), is that the embedding ZZ ↪→ YY is compact.)

Proof. Under the assumption ϑ < 1, the map: y 7→ [LFy+z] is a contraction
on YY so there is a unique fixpoint y = Y (z), the solution of (3.15). One easily
obtains the Lipschitz constant 1/(1 − ϑ) for the solution map Y (·) : z 7→ y :
YY → YY and composing this with the Lipschitzian maps ZZ ↪→ YY on one side and
F on the other gives the desired Lipschitz continuity for GF : z 7→ Fy : ZZ → VV.
This gives linear growth for Y (·) : ZZ → YY and composing that with (6.48) gives
(4.28). The compactness assertion (iii) is an immediate consequence of Lemma 2
in [14], applied to the uniformly contractive family of maps: g 7→ F(Lg + z)
(z ∈ ZZ0) whose fixpoints give GF(ZZ0). 2

Note that our treatment of these problems presupposes well-posedness for
the equations and, for our application of fixed-point arguments, convexity of
ZZad and suitable compactness.

We now turn to a somewhat more general consideration of abstract settings
giving (H1). For this consideration our present concerns are essentially identical
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with those of [15] and we recall the relevant discussion there in providing classes
of settings for which the relevant well-posedness and compactness can be verified.
For this we suppose A(·) generates a fundamental solution (evolution system)
S — i.e.,

(i) S(t, s) is a bounded linear operator on X with(6.50)
‖S(t, s)‖ ≤M for 0 ≤ s ≤ t ≤ T ;

(ii) S(t, s)S(s, r) = S(t, r) for 0 ≤ r ≤ s ≤ t ≤ T ;
(iii) S(t, s)ξ −→ ξ as t→ s+ for ξ ∈ X ;
(iv) ∂S(t, s)ξ/∂t = A(s)ξ for t = s and ξ ∈ D = D(A(s)).

This permits us to introduce the notion of a mild solution [9] of (1.2) or (1.4):
the linear map L will be given, in terms of S(·), by

[Lv](t) = L[t]v :=
∫ t

0

S(t, s)v(s) ds for 0 ≤ t ≤ T(6.51)

for suitable v(·). In this formulation, (1.1) corresponds to the nonlinear integral
equation5 (abstract Volterra equation of second kind):

x(t) = z̄(t) +
∫ t

0

S(t, s)[f(s, x(s)) + [B(u)](s)] ds

This is, of course, just the operator equation (3.15).
Now introduce (reflexive) Banach spaces V,W and spaces VV andWW of V- and

W-valued functions, respectively, on [0, T ]. We assume VV, WW are compatible
with X in the sense that the set V ∩ X is dense both in V and in X with

vk ∈ V ∩ X , vk
V→ v̂, vk

X→ x̂ =⇒ v̂ = x̂ ∈ V ∩ X

and similarly for [W,X ]. It will thus be possible to make suitable extensions or
restrictions of S(t, s) so, e.g., the formal definition (3.14) may make sense for v
in VV or in WW.

We note that [15] provides four alternate sets of more concrete conditions
on X ,W,V,S(··), f(··) under which one can verify (H1). For convenience of
reference we present these here, converted to our present notation. For this, we
take VV,WW to have the form

VV := Lp([0, T ] → V), WW := Lp′([0, T ] →W)(6.52)

and introduce another possible space Y compatible with X . We assume:

5Here z̄(t) is the solution of the equation ż = Az with the original initial conditions.
With our assumption that the problem has been formulated so as to have homogeneous initial
conditions, this term vanishes: z̄ = 0.
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(C1) Let each of the following hold:

(i) ‖S(t, s)‖V→X ≤ ρV (t− s), ‖S(t, s)‖W→X ≤ ρW (t− s),
‖S(t, s)‖V→Y ≤ ρ̂V (t− s), ‖S(t, s)‖W→Y ≤ ρ̂W (t− s);

(ii) ‖S(t, s)− S(t′, s)‖Y→X , ‖S(t, s)− S(t′, s)‖W→X ≤ ε
for 0 ≤ s ≤ t′ − ε, t′ < t ≤ T with ε = ε(h) → 0 as
h := t− t′ → 0;

(iii) |f(t, η)|V ≤ α(t) + β|η|r̄
Y

(r̄ := p̄/p < 1)
|S(t, s)[f(s, η)− f(s, η′)]|Y ≤ ρY (t− s)|η − η′|Y

where

ρV ∈ Lq, ρW ∈ Lq′ ρ̂V ∈ Lq̄, ρ̂W ∈ Lq̄′ , α ∈ Lp, ρY ∈ L1,

with 1 < p, p′ <∞, 1 ≤ p̄ < p, and

1/p+ 1/q = 1/p′ + 1/q′ = 1; 1/p+ 1/q̄, 1/p′ + 1/q̄′ ≤ 1 + 1/p̄.

To the set of conditions (C1) we may adjoin any of four alternative conditions:

(C2) Let any one of the following hold:

(i) For some Banach space Ŷ = Ŷi such that the embedding:
Y ↪→ Ŷ is compact, assume that for small δ > 0 there exists
Mδ such that

‖S(t, t− δ)‖
Ŷ→Y

≤Mδ for δ ≤ t ≤ T .

(ii) For some Banach space Ŷ = Ŷii such that the embedding
Ŷ ↪→ Y is compact, strengthen (C1)(i) by requiring:

‖S(t, s)‖
W→Ŷ

≤ ρ̂W (t− s) (Ŷ replacing Y).

(iii) For some Banach space Ŷ = Ŷiii such that the embedding:
Y ↪→ Ŷ is compact, strengthen the growth condition in
(C1)(iii) by requiring

|f(t, ζ)|V ≤ α(t) + β|ζ|r̄
Ŷ
.

with r̄ := p̄/p < 1 (Ŷ replacing Y).
(iv) Take Y = X reflexive in (C1) and, for some Banach space

Ŷ = Ŷiv such that X = Y ↪→ Ŷ is a compact embedding,
assume that for each µ > 0 there exists αµ ∈ Lp for which

|ζ|
Ŷ
≤ µ =⇒ |f(t, ζ)|V ≤ αµ(t).

Lemma 4. Let X ,W,V, etc., be as above and assume (C1); we will norm
ZZ := LWW so L is an isometry. Then one has (H1)(i) and (H1)(ii) as well as
the growth condition (4.28). If, in addition, we assume (C2) (i.e., any one of
the four alternative conditions presented), then G is also compact:

(C1) + (C2) =⇒ (H1) + (4.28).
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Proof. See [15] for details. We note here that only (C1)(ii) is used to
give (H1)(i) and that (C1)(i),(iii) give a solution of (3.15) initially in YY :=
Lp̄([0, T ] → Y) from which one obtains g := f(·, x(·)) ∈ VV by Krasnoselskii’s
Theorem (cf., e.g., [2]). One then has x ∈ XX from x = Lg + Lw and (H1)(i).
The four alternative arguments for compactness of G from (C2) use, among
them, the Aubin Compactness Theorem [1], the Arzela–Ascoli Theorem, and
an argument from [14]. 2

Remark. The conditions above do not apply directly to boundary control
(as in Examples 2 and 3) but the arguments in [15] may be easily modifiable
to treat this situation. Indeed, the arguments in [15] are fairly standard, using
convolution estimates from the form of (C1)(i) as applied to the representation
(6.51) and the modification simply amounts to the corresponding use of a rather
similar representation [3]

z(t) = [Lw](t) =
∫ t

0

[(−A)ϑS(t− s)][(−A)1−ϑΓ]w(s) ds(6.53)

for the solution of

ż = Az, Mz = w := B(u) ∈ WWad.(6.54)

Here, A (whose domain formally involves imposition of homogeneous boundary
conditions) is the infinitesimal generator of an analytic semigroup S on X and M
is the appropriate boundary operator; we have introduced the so-called “Green’s
operator” Γ : ω 7→ υ by

−Aυ = 0, Mυ = ω.

We then use regularity theory for the problem defining Γ, the relation of the
Sobolev spaces H2ϑ := [L2,H1]2ϑ to the domain of (−A)ϑ (e.g., [7] or [8]) when
A is a second order elliptic operator, and the estimate (2.9).

We now turn to consideration of the convexity of ZZad and ask: How re-
strictive an assumption is this? We have already noted that we may replace
ZZad by any equivalent set ZZ ′ad satisfying (3.17) and we shall now see that we
may quite reasonably expect to find such a closed convex set ZZ ′ad. We will
actually work with WWad (cf. (3.18)) and will find a natural setting for which
WWad ≡ WW ′

ad := coWWad (co = closed convex hull in WW). We first need a
preparatory result, which we “dignify” as a theorem.

Theorem 7. Let WW have the form Lp([0, T ] → W) [1 ≤ p < ∞] with W
satisfying the technical hypothesis that6

WW∗ := L∞([0, T ] →W∗) is dense in WW∗.(6.55)

6It is known to be sufficient for this that W be reflexive or, somewhat more generally, that
W have the Radon-Nikodym Property; cf., e.g., [6].
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Suppose a subset WW0 ⊂ WW has7 the segment property:

(SP) w0, w1 ∈ WW0 =⇒ ws ∈ WW0 (s ∈ S = {dense in [0, T ]})

where, given w0 and w1, we set

ws(t) := {w1(t) for 0 ≤ t < s; w0(t) for s ≤ t ≤ T}.

Then WW1, the sequential weak closure of WW0 in WW, is just the closed convex
hull coWW0.

Proof. We set ΣS := {finite unions of intervals in [0, T ] with endpoints in
S}; for σ ∈ ΣS , let χσ be its characteristic function and then for w0, w1 ∈ WW0

set
wσ = {w1 on σ; w0 on [0, T ]\σ} = (1− χσ)w0 + χσw1

so, e.g., ws — as defined for (SP) — is now w[0,s). Note that repeated application
of (SP) shows that each such wσ must also be in WW0. Note, also, that (SP) for
WW0 immediately gives (SP) for its sequential weak closure WW ′: just consider
approximating sequences from WW0. Since coWW1 = coWW0, we may assume, with
no loss of generality, that WW0 is already (sequentially weakly) closed and only
show that (SP) then implies its convexity.

Now observe that for any constant ϑ ∈ (0, 1) there is a sequence {σn} ⊂ ΣS
such that {χσ} is weak-* convergent to the constant function ϑ in L∞(0, T ). To
see this, just partition [0, T ] into n equal subintervals and (noting the assumed
density of S) choose a sub-subinterval in each with endpoints in S and having
length approximately ϑT/n; this gives σn. The weak-* convergence to ϑ is then
an easy computation.

Given any w0, w1 ∈ WW0 and ϑ ∈ (0, 1), we note, by repeated application of
(SP), that each wσ = [χσw1 + (1− χσ)w0] is also in WW0. For any ψ ∈ WW∗ the
W-duality product 〈ψ,w1−w0〉 (taken pointwise in t) is a function in Lp(0, T ) ⊂
L1(0, T ) so for the WW-duality we have

〈ψ,wσ〉 =
∫ T

0

〈ψ, χσw1 + (1− χσ)w0〉 dt

=
∫ T

0

χσ〈ψ,w1 − w0〉 dt+ 〈ψ,w0〉

= 〈χσ, 〈ψ,w1 − w0〉〉L1(0,T )
+ 〈ψ,w0〉

−→ 〈ϑ, 〈ψ,w1 − w0〉〉L1(0,T )
+ 〈ψ,w0〉

= 〈ψ, ϑw1 + (1− ϑ)w0〉.

Since this holds for each ψ in the dense subset WW∗ ⊂ WW∗, it follows that
wσ ⇀ [ϑw1 + (1 − ϑ)w0] (weak convergence in WW) so this is in WW0. This, for
each such w0, w1, ϑ, is just the desired convexity of WW0. 2

7Typically, UUad has the form: UUad = {u ∈ UU : u(t) ∈ Uad(t) ⊂ U a.e.} and so satisfies
(SP) if, say, UU := Lp([0, T ] → U) . In this case, if B is defined pointwise in t for (1.2), etc.,
then (SP) is immediate for WWad.
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Corollary. Assume (H1). Let WW, WWad be as in Theorem 7. Suppose
S : w 7→ z : WW → ZZ, as in (3.18), is continuous with ES : WW → X compact
and the graph of GF ◦S is closed in WWsw×VV (·sw indicates the sequential weak
topology). Then WWad ≡ WW ′

ad := coWWad in the sense of (3.17).
Proof. SinceWWad ⊂ WW ′

ad, we automatically have similar inclusions in (3.17).
It is the converse which is effectively a corollary to Theorem 7.

Fix ξ ∈ K̄F(ZZ ′ad) where ZZ ′ad := S[coWWad] so for each (fixed) ε > 0 there is
some w = wε ∈ coWWad such that |ξ −TSw| < ε; set z = Sw and g = Gz. By
Theorem 7 there is then a sequence wk inWWad with wk ⇀ w. Since {zk := Swk}
is bounded we may, by (H1)(iii), extract a subsequence (still denoted by wk)
with gk = Gzk → ĝ in VV. The closed graph requirement then ensures that
ĝ = g so, in particular, L[T ]gk → L[T ]g in XX . Since we also have ESwk → ESw
by the assumed compactness, this gives TSwk → TSw. This shows that for
some wk ∈ WWad we have |ξ − TSwk| < 2ε and that, for each ε > 0, proves
that we have ξ ∈ K̄F(ZZad). Of course this applies for each ξ ∈ K̄F(ZZ ′ad). The
arguments for K̄0 and K̄g are similar but simpler. 2

Note that, with only a small modification of the hypotheses here, one can
show that the closures (say, in XX ) of the solution sets for (1.2), (1.4), (1.1) will
be the same for WWad as for its (closed) convex hull WW ′

ad.
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