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1. Introduction
We must begin by making an important distinction between the consider-

ations appropriate to a great variety of practical problems for controlled heat
transfer and those more theoretical considerations which arise when we wish
to apply the essential ideas developed for the control theory of ordinary dif-
ferential equations in the context of systems governed by partial differential
equations — here, the linear heat equation

∂v

∂t
=
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
for t > 0, x = (x, y, z) ∈ Ω ⊂ IR3.(1.1)

Many of the former set of problems are ones of optimal design, rather than
of dynamic control and many of the essential concerns are related to fluid
flow in a heat exchanger or to phase changes (e.g., condensation) or to other
issues which go well beyond the physical situations described by (1.1). Some
properties of (1.1) are relevant for these problems and we shall touch on
these, but the essential concerns which dominate them are outside the scope
of this article.

The primary focus of this article will be, from the point of view of con-
trol theory, on the inherent distinctions one must make between ‘lumped
parameter systems’ (with finite-dimensional state space, governed by ordi-
nary differential equations) and ‘distributed parameter systems’ governed by
partial differential equations such as (1.1) so that the state, for each t, is
a function of position in the spatial region Ω. While (1.1) may be viewed
abstractly as an ordinary differential equation1

dv

dt
= ∆∆∆v + ψ for t > 0,(1.3)

it is important to realize that abstract ordinary differential equations such as
(1.3) are quite different in nature from the more familiar ordinary differential
equations with finite-dimensional state so one’s intuition must be attuned

1Now v(t) denotes the state, viewed as an element of an infinite-dimensional space of
functions on Ω, and ∆∆∆ = ~∇2 is the Laplace operator, given in the 3-dimensional case by

∆∆∆ : v 7→ ∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
(1.2)

with specification of the relevant boundary conditions.
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to this situation. Further, the intuition appropriate to consideration of the
parabolic partial differential equation (1.3) is quite different form what would
be appropriate, say, for the wave equation

d2w

dt2
= ∆∆∆w + ψ2 for t > 0,(1.4)

which describes a very different set of physical phenomena with very different
properties (although in subsection 5:C we do describe an interesting relation
for the corresponding theories of observation and control).

The first two sections of this article provide, as background, some rel-
evant properties of (1.1), including the presentation of some examples and
implications of these general properties for practical heat conduction prob-
lems. We then turn to the discussion of system-theoretic properties of (1.1)
or (1.3). We will emphasize, in particular, the considerations which arise
when the input/output occurs in a way which has no direct analog in the
theory of lumped parameter systems — not through the equation itself, but
through the boundary conditions which are appropriate to the partial differ-
ential equation (1.1). This mode of interaction is, of course, quite plausible
for physical implementation since it is typically difficult to influence or to
observe directly the behavior of the system in the interior of the spatial
region.

2. Background: physical derivation
Unlike situations involving ordinary differential equations with finite-

dimensional state space, it is almost impossible to work with partial differen-
tial equations without developing a deep appreciation for the characteristic
properties of the particular kind of equation. For the classical equations,
such as (1.1), this is closely related to physical interpretations. Thus, we
begin with a discussion of some interpretations of (1.1) and only then note
the salient properties which will be needed to understand its control.

While we speak of (1.1) as the heat equation, governing conductive heat
transfer, our intuition will be aided by noting also that this same equation
also governs molecular diffusion for dilute solutions and certain dispersion
phenomena as well as the evolution of the probability distribution in the
stochastic theory of Brownian motion.

For heat conduction, we begin with the fundamental notions of heat con-
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tent Q and temperature, related2 by

[heat content] = [heat capacity] · [temperature].(2.2)

or, in symbols,
Q = ρc T(2.3)

where Q is here the heat density (per unit volume), ρ is the mass density, T
is the temperature, and c is the ‘incremental heat capacity’ [amount of heat
needed to raise the temperature of a unit mass by, say, 1◦]. The well-known
physics of the situation is that heat will flow by conduction from one body to
another at a rate proportional to the difference of their temperatures. Within
a continuum one has a heat flux vector ~q describing the heat flow: ~q · ~n dA is
the rate (per unit time) at which heat flows through any (imaginary) surface
element dA, oriented by its unit normal ~n. This is now given by Fourier’s
Law :

~q = −k gradT = −k~∇T(2.4)

with a (constant3) coefficient of heat conduction k > 0.
For any (imaginary) region B in the material, the total rate of heat flow

out of B is then
∫
∂B ~q · ~n dA (where ~n is the outward normal to the bounding

surface ∂B) and, by the Divergence Theorem, this equals the volume integral
of div ~q. Combining this with (2.3) and (2.4) — and using the arbitrariness

2More precisely, since the mass density ρ and the incremental heat capacity c (i.e., the
amount of heat needed to raise the temperature of a unit mass of material by, e.g., 1◦C
when it is already at temperature ϑ) are each temperature-dependent, the heat content in
a region R with temperature distribution T (·) is given by

Q = Q(B) =
∫
B

∫ T

0

[ρc](ϑ) dϑ dV.(2.1)

For our present purposes we are assuming that (except, perhaps, for the juxtaposition of
regions with dissimilar materials) we may take ρc to be constant. Essentially, this means
that we assume the temperature variation is not so large as to force us to work with the
more complicated nonlinear model implied by (2.1). In particular, it means that we will
not treat situations involving phase changes such as condensation or melting.

3This coefficient k is, in general, also temperature dependent as well as a material
property. Our earlier assumption in connection with ρc is relevant here also to permit us
to take k to be a constant.
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of B — this gives the governing4 heat equation

ρc
∂T

∂t
= ~∇ · k~∇T + ψ(2.5)

where ψ is a possible source term for heat.
Let us now derive the equation governing molecular diffusion, so we are

considering the spread of some substance in another (e.g., a ‘solute’ in a
‘solvent’) caused, as discussed in one of Einstein’s famous papers of 1905, by
the random collisions of molecules. Assuming a dilute enough solution that
one can neglect the volume fraction occupied by the solute in comparison with
the solvent, we may present our analysis simply in terms of the concentration
(relative density) C of the relevant chemical component. One has, entirely

analogous to the previous derivation, a material flux vector ~J which is now
given by Fick’s Law :

~J = −D~∇C(2.6)

where D > 0 is the diffusion coefficient5. As in deriving (2.5), this law for
the flux immediately leads to the conservation equation

∂C

∂t
= ~∇ ·D~∇C + ψ(2.7)

where ψ is now a source term for this component — say, by some chemical
reaction.

A rather different mechanism for the spread of some substance in another
depends on the effect of comparatively small relative velocity fluctuations of
the medium — e.g., gusting in the atmospheric spread of the plume from a
smokestack or the effect of path variation through the interstices of packed
soil in considering the spread of a pollutant in groundwater flow. Here one
again has a material flux for the concentration — given now by Darcy’s Law,
which appears identical to (2.6). The situation may well be more complicated

4It is essential to realize that ~q, as given in (2.4), refers to heat flow relative to the
material. If there is spatial motion of the material itself, then this argument remains
valid provided the regions B are taken as moving correspondingly — i.e., (1.3) holds in
material coordinates. When this is referred to stationary coordinates, we view the heat as
transported in space by the material motion — i.e., we have convection.

5More detailed treatments might consider the possibility that D depends on the tem-
perature, etc., of the solvent and is quite possibly also dependent on the existing concen-
tration, even for dilute concentrations. As earlier, we neglect these effects as insignificant
for the situations under consideration and take D to be constant.
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here, however, since one may well have anisotropy (D is then a matrix) and/or
various forms of degeneracy (e.g., D becoming 0 when C = 0); nevertheless,
we still get (2.7) with this dispersion coefficient D. Here, as earlier, we will
assume we may take a constant scalar D > 0.

As we are assuming constant coefficients in each case, we may simplify
(2.5) or (2.7) by writing these as

vt = D∆∆∆v + ψ(2.8)

where v stands either for the temperature T or the concentration C, the
subscript t denotes a partial derivative, and, in considering (2.5), D stands
for the thermal diffusivity α = k/ρc. We may, of course, always choose units
to make D = 1 in (2.8) so it becomes precisely (1.3). It is interesting and
important for applications to have some idea of the range of magnitudes
of the coefficient D in (2.8) in fixed units — say, cm2/sec. — for various
situations. For heat conduction, typical values of the coefficient D = α are,
quite approximately:

8.4 for heat conduction in diamond; 1.1 for copper; .2–.6 for steam
(rising with temperature); .17 for cast iron and .086 for bronze;
.011 for ice; 7.8× 10−3 for glass; 4× 10−3 for soil; 1.4–1.7× 10−3

for water; 6.2× 10−4 for hard rubber; etc.

For molecular diffusion, typical figures for D might be

around .1 for many cases of gaseous diffusion; .28 for the diffusion
of water vapor in air and 2 × 10−5 for air dissolved in water;
2× 10−6 for a dilute solution of water in ethanol and 8.4× 10−6

for ethanol in water; 1.5 × 10−8 for solid diffusion of carbon in
iron and 1.6× 10−10 for hydrogen in glass, etc.

Finally, for, e.g., the dispersion of a smoke plume in mildly stable atmosphere
(say, a 15mph breeze) one might, on the other hand, have D approximately
106 cm2/sec. — as might be expected, dispersion is a far more effective
spreading mechanism than molecular diffusion.

Assuming one knows the initial state of the physical system

v(x, t = 0) = v0(x) on Ω(2.9)

where Ω is the region of IR3 we wish to consider, we still cannot expect
to determine the system evolution unless we also know (or can determine)
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the source term ψ and, unless Ω would be all of IR3, can furnish adequate
information about the interaction at the boundary ∂Ω. The simplest setting
is that there is to be no such interaction at all: the physical system is to be
insulated from the rest of the universe so there is no flux across the boundary.
Formally, this requires ~q · ~n = 0 or, from (2.7) or (2.4) with the scaling of
(2.8),

−D∂v

∂n
= −D~∇v · ~n = 0.(2.10)

More generally, the flux might be more arbitrary but known so we have the
inhomogeneous Neumann condition:

−D∂v

∂n
= g1 on Σ = (0, T )× ∂Ω.(2.11)

An alternative6 set of data would involve knowing the temperature (concen-
tration) at the boundary, i.e., having the Dirichlet condition:

v = g0 on Σ = (0, T )× ∂Ω.(2.13)

The mathematical theory supports our physical interpretation:

If we have (1.1) on Q = (0, T )×Ω with ψ specified on Q and the
initial condition (2.9) specified on Ω, then either7 of the boundary
conditions (2.11) or (2.13) suffices to determine the evolution of
the system on Q, i.e., for 0 < t ≤ T .

We refer to either of these as the direct problem. An important property of
this problem is that it is well-posed, i.e., a unique solution exists for each

6Slightly more plausible physically would be to assume that the ambient temperature
or concentration would be known or determinable to be g ‘just outside’ ∂Ω and then to
use the flux law (proportionality to the difference) directly:

−D∂v

∂n
= ~q · ~n = λ(v − g) on Σ(2.12)

with a flux transfer coefficient λ > 0. Note that, if λ ≈ 0 (negligible heat or material
transport), then we effectively get (2.10). On the other hand, if λ is very large (v − g =
−(D/λ)∂v/∂n with D/λ ≈ 0), then v will immediately tend to match g at ∂Ω, giving
(2.13); see subsection 4A.

7We may also have, more generally, a partition of ∂Ω into Γ0 ∪ Γ1 with data given in
the form (2.13) on Σ0 = (0, T )× Γ0 and in the form (2.11) on Σ1 = (0, T )× Γ1.
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choice of the data and small changes in the data produce8 correspondingly
small changes in the solution.

3. Background: significant properties
In this section we note some of the characteristic properties of the ‘direct

problem’ for the partial differential equation (1.1) and, related to these, in-
troduce the representation formulas underlying the mathematical treatment.

3:A. The Maximum Principle and conservation

One characteristic property, going back to the physical derivation, is that
(1.1) is a conservation equation. In the simplest form, when heat or material
is neither created nor destroyed in the interior (ψ ≡ 0) and if the region is
insulated (2.10), then [total heat or material] =

∫
Ω v dV is constant in time.

More generally, we have

d

dt

[∫
Ω
v dV

]
=
∫

∂Ω
g1 dA+

∫
Ω
ψ dV(3:A.1)

for v satisfying (1.3)-(2.11).
Another important property is the Maximum Principle:

Let v satisfy (1.3) with ψ ≥ 0 on Qτ := (0, τ) × Ω. Then the
minimum value of v(t,x) on Qτ is attained either initially (t =
0) or at the boundary (x ∈ ∂Ω). Unless v is a constant, this
value cannot also occur in the interior of Qτ ; if it is a boundary
minimum with t > 0, then one must have ∂v/∂~n > 0 at that
point. Similarly, if v satisfies (1.3) with ψ ≤ 0, then its maximum
is attained for t = 0 or at x ∈ ∂Ω, etc.

One simple argument for this rests on the observation that at an interior
minimum one would necessarily have vt = ∂v/∂t ≤ 0 and also ∆v ≥ 0.

The Maximum Principle shows, for example, that the mathematics of
(1.1) is consistent with the requirement for physical interpretation that a

8We note that making this precise — i.e., specifying the appropriate meanings of ‘small’
— becomes rather technical and, unlike the situation for ordinary differential equations,
can be done in several ways which each may be useful for different situations. We will see,
on the other hand, that some other problems which arise in system-theoretic analysis turn
out to be ‘ill-posed’, i.e., not to have this well-posedness property; see, e.g., subsection 4:C.
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concentration cannot become negative and the fact that, since heat flows
‘from hotter to cooler’, it is impossible to develop a ‘hot spot’ except by
providing a heat source.

3:B. Smoothing and localization

Perhaps the dominant feature of (1.1) is that solutions rapidly smooth
out, with peaks and valleys of the initial data averaging out. We will see this
in more mathematical detail later, but comment now on three points:
• approach to steady state
• infinite propagation speed
• localization and geometric reduction

The first simply means that if neither ψ nor the data g0 would vary in
time, then the solution v of (1.3)-(2.13) on (0,∞)×Ω would tend, as t→∞,
to the unique solution v̄ of the (elliptic) steady-state equation

−
[
∂2v̄

∂x2
+
∂2v̄

∂y2
+
∂2v̄

∂z2

]
= ψ, v̄

∣∣∣
∂Ω

= g0.(3:B.1)

Essentially the same would hold if we were to use (2.11) rather than (2.13)
except that, as is obvious from (3:A.1), we must then impose a consistency
condition that ∫

∂Ω
g1 dA+

∫
Ω
ψ dV = 0

for there to be a steady state at all — and then must note that the solution
of the steady-state equation

−
[
∂2v̄

∂x2
+
∂2v̄

∂y2
+
∂2v̄

∂z2

]
= ψ, ∂v̄/∂~n = g1(3:B.2)

only becomes unique when one supplements (3:B.2) by specifying, from the
initial conditions (2.9), the value of

∫
Ω v̄ dV .

Unlike the situation with the wave equation (1.4), the mathematical for-
mulation (1.1), etc., implies an infinite propagation speed for disturbances
— e.g., the effect of a change in the boundary data g0(t,x) at some point
x∗ ∈ ∂Ω occurring at a time t = t∗ is immediately felt throughout the re-
gion, affecting the solution for every x ∈ Ω at every t > t∗. One can see
that this is necessary to have the Maximum Principle, for example, but it is
certainly non-physical. This phenomenon is a consequence of idealizations
in our derivation and becomes consistent with our physical intuition when
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we note that this ‘immediate influence’ is extremely small: there is, indeed,
a noticeable delay before a perturbation will have a noticeable effect at a
distance.

Consistent with the last observation, we note that the behavior in any
subregion will, to a great extent, be affected only very slightly (in any fixed
time) by what happens at parts of the boundary which may be very far
away; this is a sort of ‘localization’ principle. For example, if we are only
interested in what is happening close to one part of the boundary, then
we may effectively treat the far boundary as ‘at infinity’. To the extent that
there is little spatial variation in the data at the nearby part of the boundary,
we may then approximate the solution quite well by looking at the solution
of the problem considered on a half-space with spatially constant boundary
data, dependent only on time. Taking coordinates so the boundary becomes
the plane ‘x = 0’, one easily sees that this solution will be independent of
the variables y, z if the initial data and source term are. The equation (1.1)
then reduces to a one-dimensional form

∂v

∂t
=
∂2v

∂x2
+ ψ(t, x)(3:B.3)

for t > 0 and, now, x > 0 with, e.g., specification of v(t, 0) = g0(t) and of
v(0, x) = v0(x). Similar dimensional reductions occur in other contexts —
one might get (3:B.3) for 0 < x < L where L gives the thickness of a slab in
appropriate units or one might get a two-dimensional form corresponding to a
body which is long compared to its constant constant cross-section and with
data which is relatively constant longitudinally. In any case, our equation
will be (1.3), with the dimensionally suitable interpretation of the Laplace
operator. Even if the initial data does depend on the variables to be omitted,
our first property asserts that this variation will tend to disappear so we may
still get a good approximation after waiting through an initial transient. On
the other hand, one usually cannot accept this approximation near, e.g., the
ends of the body where ‘end effects’ due to those boundary conditions may
become significant.

3:C. Linearity

We follow Fourier in using the linearity of the heat equation, expressed
as a ‘superposition principle’ for solutions, to obtain a general representation
for solutions as an infinite series. Let {[ek, λk] : k = 0, 1, . . .} be the pairs of
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eigenfunctions and eigenvalues for −∆∆∆ on Ω, i.e.,

−∆∆∆ek = λkek on Ω (with BC) for k = 0, 1, . . .(3:C.1)

where “BC” denotes one of the homogeneous conditions

ek = 0 or
∂ek

∂~n
= 0 on ∂Ω(3:C.2)

according as we are considering (2.13) or (2.11). It is always possible to take
these so that ∫

Ω
|ek|2 dV = 1,

∫
Ω
eiek dV = 0 for i 6= k,(3:C.3)

with 0 ≤ λ0 < λ1 ≤ . . .→∞; we have λ0 > 0 for (2.13) and λ = 0 for (2.11).
One sees immediately from (3:C.1) that each function e−λktek(x) satisfies

(1.1) so, superposing, we see that

v(t,x) =
∑
k

cke
−λktek(x)(3:C.4)

gives the ‘general solution’ with the coefficients (ck) obtained from (2.9) by

ck = 〈ek, v0〉 so v0(·) =
∑
k

ckek(·),(3:C.5)

assuming (3:C.3). Note that 〈·, ·〉 denotes the L2(Ω) inner product: 〈f, g〉 =∫
Ω f(x)g(x) dmx (for m-dimensional Ω — with, physically, m = 1, 2, 3). The

expansion (3:C.5), and so (3:C.4), is valid if the function v0 is in the Hilbert
space L2(Ω), i.e., if

∫
Ω |v0|2 < ∞. Note that the series (3:C.5) need not

converge pointwise unless one assumes more smoothness for v0 but, since it
is known that, asymptotically as k →∞, one has

λk ∼ Ck2/m with C = C(Ω),(3:C.6)

the factors e−λkt decrease quite rapidly for any fixed t > 0 and (3:C.4) then
converges nicely to a smooth function. Indeed, this is just the ‘smoothing’
noted above: this argument can be used to show that solutions of (1.1) are
analytic (representable locally by convergent power series) in the interior of Ω
for any t > 0 and we note that this does not depend on having homogeneous
boundary conditions.

11



Essentially the same approach can be used when there is a source term
ψ as in (2.5) but we still have homogeneous boundary conditions as, e.g.,
g0 = 0 in (2.13). We can then obtain the more general representation

v(t,x) =
∑

k γk(t)ek(x) where

γk(t) = cke
−λkt +

∫ t
0 e

−λk(t−s)ψk(s) ds,

ck = 〈ek, v0〉, ψk(t) = 〈ek, ψ(t, ·)〉
(3:C.7)

for the solution of (2.5). When ψ is constant in t this reduces to

γk(t) = ψk/λk + [ck − ψk/λk] e
−λkt −→ ψk/λk

which not only shows that v(t, ·) → v̄, as in (3:B.1) with g0 = 0, but also
demonstrates the exponential rate of convergence with the transient domi-
nated by the principal terms, corresponding to the smaller eigenvalues. This
last must be modified slightly when using (2.11), since one then has λ0 = 0.

Another consequence of linearity is that the effect of a perturbation is
simply additive: if v̂ is the solution of (2.5) with data ψ̂ and v̂0 and one
perturbs this to obtain a new perturbed solution ṽ for the data ψ̂ + ψ and
v̂0 + v0 (and unperturbed boundary data), then the solution perturbation
v = ṽ− v̂ itself satisfies (2.5) with data ψ and v0 and homogeneous boundary
conditions. If we now multiply the partial differential equation by v and
integrate, we obtain

d

dt

(
1
2

∫
Ω
|v|2

)
+
∫
Ω
|~∇v|2 =

∫
Ω
vψ,

using the Divergence Theorem to see that
∫
v∆∆∆v = −

∫
|~∇v|2 with no bound-

ary term since the boundary conditions are homogeneous. The Cauchy-
Schwartz Inequality gives |

∫
vψ| ≤ ‖v‖ ‖ψ‖ where ‖ · ‖ is the L2(Ω)-norm:

‖v‖ = [
∫
Ω |v|2]

1/2
and we can then apply the Gronwall Inequality9 to get, for

example, the energy inequality

‖v(t)‖2, 2
∫ t

0
‖~∇v‖2 ds ≤

(
‖v0‖2 +

∫ t

0
‖ψ‖2 ds

)
et.(3:C.8)

This is one form of the well-posedness property asserted at the end of the
last section.

9If a function ϕ ≥ 0 satisfies: ϕ(t) ≤ C +M
∫ t

0
ϕ(s) ds for 0 ≤ t ≤ T , then it satisfies:

ϕ(t) ≤ CeMt there.
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3:D. Autonomy, similarity and scalings

Two additional useful properties of the heat equation are autonomy and
causality. The first just means that the equation itself is time-independent
so a time-shifted setting just gives the time-shifted solution. For the pure
initial-value problem — i.e., (1.1) with g = 0 in (2.13) or (2.11) — ‘causality’
means that v(t, ·) is determined by its ‘initial data’ at any previous time t0
so we may write

v(t, ·) = S(t− t0) v(t0, ·)(3:D.1)

where S(τ) is the solution operator for (1.1) for elapsed time τ ≥ 0. This op-
erator S(τ) is a nice linear operator in a variety of settings, e.g., L2(Ω) or the
space C(Ω̄) of continuous functions with the topology of uniform convergence.
A comparison with (3:C.4) shows that

S(t) : ek 7→ e−λktek so S(t)

[∑
k

ckek

]
=

[∑
k

cke
−λktek

]
.(3:D.2)

From (3:D.2) one obtains the fundamental ‘semigroup property’

S(s+ t) = S(t) ◦ S(s) for t, s ≥ 0.(3:D.3)

This only means that, if one initiates (1.1) with any initial data v0 at time
0 and so obtains v(s, ·) = S(s)v0 after a time s and v(s + t, ·) = S(s + t)v0

after a longer time interval of length s + t, as in (3:D.1), ‘causality’ gives
v(s + t, ·) = S(t)v(s, ·). It is possible to verify that this operator function is
strongly continuous at t = 0:

S(t)v0 → v0 as t→ 0 for each v0

and differentiable for t > 0: the equation (1.1) just tells us that

d

dt
S(t) = ∆∆∆S(t)(3:D.4)

where the Laplace operator ∆∆∆ here includes specification of the appropriate
boundary conditions; we refer to ∆∆∆ in (3:D.4) as ‘the infinitesimal generator
of the semigroup S(·)’.

In terms of S(·) we obtain a new solution representation for (2.5):

v(t, ·) = S(t)v0 +
∫ t

0
S(t− s)ψ(s, ·) ds.(3:D.5)
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Note that S precisely corresponds to the ‘Fundamental Solution of the ho-
mogeneous equation’ for ordinary differential equations and (3:D.5) is just
the usual ‘variation of parameters’ solution for the inhomogeneous equation
(2.5); compare also with (3:C.4). We may also treat the system with inhomo-
geneous boundary conditions by introducing the Green’s operator G : g 7→ w,
defined by solving

−∆∆∆w = 0 on Ω, Bw = g at ∂Ω.(3:D.6)

with Bw either w or ∂w/∂~n, according as we consider (2.13) or (2.11). Using
the fact that u = v−w then satisfies ut = ∆∆∆u+ (ψ−wt) with homogeneous
boundary conditions, we may use (3:D.5) and (3:D.4) to get, after an inte-
gration by parts,

v(t, ·) = S(t)v0 + G[g0(t)− g0(0)]

+
∫ t
0 S(t− s)ψ(s, ·) ds−

∫ t
0 ∆∆∆S(t− s)Gg0(s) ds.

(3:D.7)

The autonomy/causality above corresponds to the invariance of (1.1) un-
der time-shifting and we now note the invariance under some other trans-
formations. For this, we temporarily ignore considerations related to the
domain boundary and take Ω to be the whole 3-dimensional space IR3.

It is immediate that in considering (2.8) (with ψ = 0) with constant
coefficients we have ensured that we may shift solutions arbitrarily in space.
Not quite as obvious mathematically is the physically obvious fact that we
may rotate in space. In particular, we may consider solutions which, spatially,
depend only on the distance from the origin so v = v(t, r) with r = |x| =√
x2 + y2 + z2. The equation (2.8) with ψ = ψ(t, r) is then equivalent to the

equation
∂v

∂t
= D

[
∂2v

∂r 2
+

2

r

∂v

∂r

]
+ ψ(3:D.8)

which involves only a single spatial variable. For the two-dimensional setting
x = (x, y) as in subsection 3.B, this becomes

∂v

∂t
= D

[
∂2v

∂r 2
+

1

r

∂v

∂r

]
+ ψ.(3:D.9)

More generally, for the d-dimensional case, (3:D.8) and (3:D.9) can be written
as

vt = r−(d−1)
(
rd−1vr

)
r
+ ψ.(3:D.10)
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The apparent singularity of these equations as r → 0 is, of course, only an
effect of the use of polar coordinates. As in subsection 3.C, we may seek
a series representation like (3:C.4) for solutions of (3:D.10) with the role of
the eigenfunction equation (3:C.1) now played by Bessel’s equation; we then
obtain an expansion in Bessel functions with the exponentially decaying time
dependence e−λkt as earlier.

Finally, we may also make a combined scaling of both time and space. If,
for some constant c, we set

t̂ = c2Dt, x̂ = cx,(3:D.11)

then, for any solution v of (2.8) with ψ = 0, the function v̂(t̂, x̂) = v(t,x) will
satisfy (1.1) in the new variables. This corresponds to the earlier comment
that we may make D = 1 by appropriate choice of units.

Closely related to the above is the observation that the function

k(t,x) = (4πDt)−d/2e−|x|
2/4Dt(3:D.12)

satisfies (3:D.10) for t > 0 while a simple computation shows10 that∫
IRd k(t,x) ddx = 1 for each t > 0(3:D.13)

so k(t, ·) becomes a δ-function as t→ 0. Thus, k(t− s,x− y) is the impulse
response function for an impulse at (s,y). Taking d = 3, we note that

v(t,x) =
∫
IR3 k(t,x− y)v0(y) d3y(3:D.14)

is a superposition of solutions (now by integration, rather than by summa-
tion) so linearity ensures that v is itself a solution; we also have

v(t, ·) −→ v0 as t→ 0,(3:D.15)

where the specific interpretation of this convergence depends on how smooth
v0 is assumed to be. Thus, (3:D.14) provides another solution representation
— although, as noted, it ignores the effect of the boundary for a physical
region which is not all of IR3. For practical purposes, following the ideas of
subsection 3.B, the formula (3:D.14) will be a good approximation to the

10We may observe that k(t, ·) is a multivariate normal distribution (Gaussian) with
standard deviation

√
2Dt→ 0 as t→ 0.
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solution so long as
√

2Dt is quite small11 as compared to the distance from
the point x to the boundary of the region.

4. Some control-theoretic problems
In this section we provide three comparatively elementary examples to

see how the considerations above apply to some control-theoretic questions.
The first relates to a simplified version of a quite practical heat transfer
problem and is treated with the use of rough approximations, essentially to
see how such heuristic treatment can be used to obtain practical results. The
second describes the problem of control to a specified terminal state — which
would be a standard problem in the case of ordinary differential equations
but which involves some new considerations in this distributed parameter
setting. The final example is a ‘coefficient identification’ problem: using
interaction (input/output) boundary to determine the function q = q(x) in
an equation of the form ut = uxx − qu, generalizing (3:B.3).

4:A. A simple heat transfer problem

We consider a slab of thickness a and diffusion coefficient D within which
heat is generated at constant rate ψ. On one side this is insulated (vx = 0)
and on the other it is in contact with a stream of coolant (diffusion coefficient
D′) moving in an adjacent duct with constant flow rate F in the y-direction.
Thus, we are considering the slab as occupying {(x, y) : 0 < x < a, 0 < y <
L} and the duct as occupying {(x, y) : a < x < ā, 0 < y < L} with a, ā� L
and no dependence on z.

If the coolant enters the duct at y = 0 with input temperature u0, our
problem is to determine how hot the slab will become. For this purpose,

11When x is too close to the boundary for this to work well, it is often plausible to think
of ∂Ω as ‘almost flat’ on the relevant spatial scale and then to extend v0 by reflection
across it — as an odd function if one were using (2.13) with g0 = 0 or as an even function
if one were using (2.11) with g1 = 0. For (2.13) with, say, g0 = g0(t) locally, there would
then be a further correction by adding∫ t

0

k̂(t− s, x)g0(s) ds, k̂(τ, x) =
x

τ
k1(τ, x) = 2D

∂k1

∂x
(3:D.16)

where k1 = k1(τ, x) is as in (3:D.12) for d = 1 and x is here the distance from x to
the boundary; compare (3:D.7). There are also comparable correction formulas for more
complicated settings.
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we assume that we are operating in steady-state, that the coolant flow is
turbulent enough to ensure perfect mixing (and so constant temperature)
across the duct, and that — to a first approximation — the longitudinal
transfer of heat is entirely by the coolant flow so we may consider conduction
in the slab only in the transverse direction (0 < x < a).

The source term ψ in the slab gives heat production aψ per unit distance
in y and this must be carried off by the coolant stream to have a steady-
state. We might, as noted earlier, shift to material coordinates in the stream
to obtain an equation there but, more simply, we just observe that when the
coolant has reached the point y it must have absorbed the amount aψy of
heat per second and, for a flow rate F (choosing units so ρc in (2.3) is 1) this
will have raised the coolant temperature from u0 to [u0 + aψy/F ] =: u(y).

Now consider the transverse conduction in the slab. We have there vt =
Dvxx + ψ with vt = 0 for steady-state. As vx = 0 at the outer boundary
x = 0, the solution has the form v = v∗− (ψ/2D)x2 where v∗ is exactly what
we wish to determine. If we assume a simple temperature match of slab to
coolant (v = u(y) at x = a), then this gives v∗(y) − (ψ/2D)a2 = v(a, y) =
u(y) = u0 + aψy/F so

v∗ = v∗(y) = u0 +
[

y
F

+ a
2D

]
aψ

v = u0 +
[

y
F

+ a
2D

(
1−

[
x
a

]2)]
aψ.

(4:A.1)

A slight correction of this derivation is worth noting: for the coolant flow we
expect a boundary layer (say, of thickness δ) of ‘stagnant’ coolant at the duct

wall and within this layer we have ux ≈ constant = −
[
v(a)− u

∣∣∣flow

]
/δ while

also −D′ux = flux = aψ by Fourier’s Law so, instead of matching v(a) = u(y),
we get v(a) = u(y) + (δ/D′)aψ which also increases v∗, v by (δ/D′)aψ as a
correction to (4:A.1); effectively, this correction notes the reduction of heat
transfer through replacing the boundary conditions (2.13) by (2.12) with
λ = D′/δ. Much more complicated corrections would be needed if one would
have to consider conduction within the duct, especially with a velocity profile
other than the plug flow assumed here.

We also note that in this derivation we neglected longitudinal conduction
in the slab, essentially omitting the vyy term in (2.8). Since (4:A.1) gives
vyy = 0, this is consistent with the equation. It is, however, inconsistent with
reasonable boundary conditions at the ends of the slab (y = 0, L) and one
would expect ‘end effects’ as well as some evening out of v∗.
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We note that, although this was derived in steady-state, we could think
of using (4:A.1) for an optimal control problem (especially if ψ would be time
dependent, but slowly varying) with the flow rate F as control.

4:B. Exact control

We consider the problem of using ψ as control to reach a specified ‘target
state’ ω = ω(x) at time T . We base the discussion on the representation12

(3:C.7), which permits us to treat each component independently: the con-
dition that v(T, ·) = ω becomes the sequence of ‘moment equations’

γk(T ) = cke
−λkT +

∫ T
0 e−λk(T−s)ψk(s) ds

= ωk := 〈ek, ω〉
(4:B.2)

for each k. This does not determine the control uniquely, when one exists,
so we select by optimality, minimizing the norm of ψ in L2(Q) with Q =
(0, T )×Ω. This turns out to be equivalent to requiring that ψk(t) should be a

constant times eλk(T−t) so, noting that
∫ T
0

∣∣∣e−λk(T−s)
∣∣∣2 ds =

[
1− e−2λkT

]
/2λk,

the conditions (4:B.2) give us the formula

ψ(t,x) = 2
∑
k

λk

(
ωk − cke

−λkT

1− e−2λkT

)
e−λk(T−t)ek(x).(4:B.3)

This formula converges if (and only if) the specified target state ω is, in fact,
attainable by some control in L2(Q). So far, so good!

Let us now see what happens when we actually attempt to implement the
use of (4:B.3). Adding a touch of realism, one must truncate the expansion
(say, at k = K) and one must then find each coefficient αk = ωk − cke

−λkT

with an error bound εk by using some algorithm of numerical integration on
Ω to compute the inner products 〈ek, ω〉. [For simplicity we assume that we
would already know exactly the relevant eigenvalues and eigenfunctions, as
is the case for (3:B.3) and for a variety of higher-dimensional geometries.]

12For definiteness, one may think of the 1-dimensional heat equation (3:B.3) with ho-
mogeneous Dirichlet boundary conditions at x = 0, 1. The eigenvalues and normalized
eigenfunctions are then

λk = k2π2, ek(x) =
√

2 sin kπx(4:B.1)

so the expansions, starting at k = 1, for convenience, are standard Fourier sine series.
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Denoting the optimal control by Ψ and the approximation obtained by ΨK ,
we can bound the total error by

‖Ψ−ΨK‖2
Q ≤ 2

K∑
k=1

[
λkε

2
k

1− e−2λkT

]
+ 2

∑
k>K

[
λkα

2
k

1− e−2λkT

]
.(4:B.4)

For an attainable target ω the second sum is small for large K, corresponding
to convergence of (4:B.3). The use of a fixed error bound |εk| ≤ ε for the
coefficient computation would make the first sum of the order of K1+(2/d)ε by
(3:C.6) so this sum would become large as K increased. To make the total
error (4:B.4) small requires picking K and then choosing ε dependent on this
choice — or using a relative error condition: |εk| ≤ ε|αk|. This last seems
quite plausible for numerical integration with floating point arithmetic —
but one trap remains! Neglecting v0, a plausible form of the error estimate
for a method of numerical integration might be

|εk| ≤ Cνh
ν‖ωek‖[ν] ∼ C ′

νh
νλ

ν/2
k ‖ω‖[ν]

where h characterizes a mesh size and the subscript on ‖ · ‖[ν] indicates
consideration of derivatives of order up to ν, with ν depending on the choice
of integration method; we have noted that ‖ek‖[ν] ∼ λ

ν/2
k since the differential

operator ∆∆∆ is already of order 2. This means that one might have to refine
the mesh progressively to get such a uniform relative error for large k.

4:C. System identification

Finally, we consider a 1-dimensional example governed by an equation
known to have the form13

∂v

∂t
= D

∂2v

∂x2
− q(x)v(4:C.1)

but with D and the specific coefficient function q(·) unknown or known with
inadequate accuracy. We will assume here that u = 0 at x = 1, but that
interaction is possible at the end x = 0: there one can both manipulate the
temperature and observe the resulting heat flux; for simplicity, we assume

13For example, such an equation might arise for a rod with heat loss to the environment
— appearing through a boundary condition at the surface of the rod as in (2.12), with g =
constant and λ varying along the rod — if one then reduced to a simplified 1-dimensional
form.
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that v0 = 0. Thus, we consider the input/output pairing: g 7→ f , defined
through (4:C.1) with

u(t, 1) = 0 u(t, 0) = g(t)

f(t) := −Dux(t, 0).
(4:C.2)

By linearity, causality, and autonomy of the equation (4:C.1), we see that
this pairing takes the convolution form

f(t) =
∫ t

0
σ(t− s)g(s) ds =

∫ t

0
σ(s)g(t− s) ds(4:C.3)

where σ(·) is a kind of impulse response function. Much as we obtained
(3:C.4) and (3:D.7), we get

σ(t) =
∑

k σke
−λkt

with σk := −Dλke
′
k(0)〈z, ek〉

Dz′′ − qz = 0 z(0) = 1, z(1) = 0,

−De′′k + qek = λkek ek(0) = 0 = ek(1),

(4:C.4)

noting that z and {(λk, ek)} are unknown since q is unknown.
Viewing (4:C.3) as an integral equation for σ, it can be shown that (4:C.3)

determines σ for appropriate choices of the input g(·) — simplest would be
if we could take g to be a δ-function (impulse) so the observed f would just
be σ: otherwise we must first solve a Volterra equation of first kind, which is
already an ill-posed problem. The function σ(·) contains all the information
about the unknown q which we can get and it is possible to show that quite
large differences for q may produce only very small perturbations of σ; thus,
this identification problem cannot be ‘well-posed’, regardless of g(·).

None of the coefficients σk will be 0 so, given σ(·), (4:C.4) uniquely deter-
mines the eigenvalues {λk} which appear there as exponents. We note that
λk ∼ Dπ2k2 so D = limk λk/π

2k2 is then determined. It is then possible to
show (by an argument involving analytic continuation, Fourier transforms,
and properties of the corresponding wave equation) that σ(·) uniquely deter-
mines q(·), as desired.

The discussion above gives no suggestion as to how to compute D, q(·)
from the observations. Typically, one seeks nodal values for a discretization
of q. This can be done, for example, by history matching, an approach
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often used for such identification problems, in which one solves the direct
problem with a guessed q to obtain a resulting ‘f = f(q)’ and proceeds to
find the q which makes this best match the observed f . With some further
a priori information about the function q — say, a known bound on the
derivative q′ — the uniqueness result, although itself non-constructive, serves
to ensure convergence for these computations to the correct result as the
discretization is refined. Note that it is the auxiliary a priori information
which converts this to a well-posed problem, although one which will be quite
badly conditioned so the practical difficulties do not entirely disappear.

5. More advanced system theory
In this section we consider the system-theoretic results available for the

heat equation, especially regarding observability and controllability. Our em-
phasis is on how, although the relevant questions are quite parallel to those
standard in ‘lumped parameter’ control theory, one has new technical diffi-
culties which can occur only because of the infinite-dimensional state space;
this will also mean that this section will depend more heavily on results of
Functional Analysis14 and special mathematical results for the partial differ-
ential equations involved. One new consideration is that the geometry of the
region Ω is relevant here. We will here concentrate primarily on problems in
which input/output interaction (for control and for observation) is restricted
to the boundary — partly because this is physically reasonable and partly
because it is only for a system governed by a partial differential equation
that one could even consider ‘control via the boundary conditions’.

5:A. The duality of observability/controllability

For the finite-dimensional case, controllability for a problem and ob-
servability for the adjoint problem are dual — essentially, one can control
ẋ = Ax + Bg (g(·) = control) from one arbitrary state to another if and
only if only the trivial solution of the adjoint equation −ẏ = A∗y can give
[observation] = B∗y(·) ≡ 0. Something similar holds for the heat equation
with boundary I/O, but we must be rather careful in our statement.

We begin by computing the relevant adjoint problem, taking the boundary

14We note [1] as a possible general refence for Functional Analysis, specifically directed
toward distributed parameter system theory.
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control problem as

ut = ∆∆∆u on Q with Bu = g on Σ and u
∣∣∣
t=0

= u0(5:A.1)

in which the control function g is the data for the boundary conditions,
defined on Σ = (0, T ) × ∂Ω. As for (3:D.6), the operator B will correspond
to either (2.13) or (2.11); we may now further include in the specification
of B a requirement that g(·) must be 0 outside some fixed ‘patch’ — i.e., a
relatively open subset U ⊂ Σ, viewed as an ‘accessible’ portion of Σ — and
then refer to this as a problem of ‘patch control’. Note that

uT := u(T, ·) = S(T )u0 + Lg(·)(5:A.2)

where (3:D.7) gives

L : g(·) 7→ G[g(T )− g(0)]−
∫ T

0
∆∆∆S(T − s)Gg(s) ds.

For the adjoint problem, we consider

−vt = ∆∆∆v Bv = 0; ϕ = [B̂v]
∣∣∣
U

(5:A.3)

where B̂ gives the ‘complementary’ boundary data: B̂v := ∂v/∂~n if B cor-

responds to (2.13) and B̂v := v
∣∣∣
∂Ω

if B corresponds to (2.11). We then have,

using the Divergence Theorem,[∫
Ω
uTvT

]
−
[∫

Ω
u0v0

]
=
∫
Q(uv)t =

∫
Q[(~∇2u)v − u(~∇2v)]

=
∫
Σ[u~nv − uv~n] = −

∫
U gϕ

where we write vT , v0 for v(T, ·), v(0, ·), respectively, and set Q = (0, T )×Ω.
Thus, with subscripts indicating the domain for the inner product of L2(·),
we have the identity

〈uT , vT 〉Ω + 〈g, ϕ〉U = 〈u0, v0〉Ω(5:A.4)

from which we wish to draw conclusions.
First, consider the reachable set R = {uT : g = any∈ L2(U);u0 = 0},

which is just the range of the operator L : L2(U) → L2(Ω). If this were not
dense, i.e., if we did not have R = L2(Ω), then (by the Hahn–Banach The-
orem) there would be some nonzero v∗T orthogonal to all uT ∈ R so (5:A.4)
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would give 〈g, ϕ∗〉U = 0 for all g, whence ϕ∗ = 0, violating detectability (i.e.,
that ϕ∗ = 0 only if v∗ = 0). Conversely, a violation of detectability would
give a nonzero v∗ with v∗T 6= 0 orthogonal to R. Thus, detectability is equiv-
alent to approximate controllability. This last means that one could control
arbitrarily closely to any target state, even if it cannot be reached exactly
— a meaningless distinction for finite-dimensional linear systems although
significant for the heat equation, as we have already noted that solutions
of (1.1) are analytic in the interior of Ω so only very special targets can be
exactly reachable.

Detectability means that the map vT 7→ v 7→ ϕ is 1–1 so, inverting,
ϕ 7→ vT 7→ v0 is well-defined: one can predict (note the time-reversal in
(5:A.3)) v0 from observation of ϕ on U . In the finite-dimensional case, any
linear map such as A : ϕ 7→ v0 would necessarily be continuous (bounded),
but here this is not automatically the case; note that the natural domain of
A is the range of vT 7→ ϕ and, if one had continuity, this would extend to
the closure M = MU ⊂ L2(U). For bounded A : M → L2(Ω) there is a
bounded adjoint operator A∗ : L2(Ω) →M and, if we were to set g = A∗u0

in (5:A.1), we would get

〈uT , vT 〉Ω = 〈u0,Aϕ〉Ω − 〈A∗u0, ϕ〉U = 0 for every vT ∈ L2(Ω).

This would imply uT = 0 so g = A∗u0 is a nullcontrol from u0 — indeed,
it turns out that this g is the optimal nullcontrol in the sense of minimizing
the L2(U)-norm. Conversely, if there is some nullcontrol g̃ for each u0, there
will be a minimum-norm nullcontrol g and the linear map C : u0 7→ g is then
continuous by the Closed Graph Theorem; further, its adjoint A = C∗ is
just the observation operator: ϕ 7→ vT . Thus, bounded observability for the
adjoint problem is equivalent to nullcontrollability for (5:A.1) which, from
(5:A.2), is equivalent to the consideration that the range of L contains the
range of S(T ).

Suppose we have nullcontrollability for arbitrarily small T > 0, always
taking U = [0, T ]×U for some fixed patch U ⊂ ∂Ω. A simple argument shows
that the reachable set R must then be entirely independent of T and of the
initial state u0. No satisfactory characterization of R is available, although
there are various known sufficient considerations to have some ω ∈ R.

5:B. The 1-dimensional case

From the discussion above, it will clearly be sufficient to prove bounded
observability for the one-dimensional heat equation to have nullcontrollability
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also. It is interesting to note that this was not realized at the time these
results were first proved so each was originally proved independently. We
will consider specifically the observability problem with Ω = (0, 1), U =
(0, T )× {0} and

vt = vxx v(t, 0) = v(t, 1) = 0; ϕ(t) := vx(t, 0),(5:B.1)

for which we explicitly know (4:B.1). From (3:C.4), we get

ϕ(t) =
∑
k

c̃ke
−λkt,(5:B.2)

v(T, ·) =
∑
k

c̃k
kπ
e−λkT ek(·).(5:B.3)

[Note that, for convenience, we have re-reversed time in comparison with
(5:A.3) and that, from (3:C.4), we have c̃k =

√
2kπ

∫ 1
0 v0(x) sin kπx dx —

although we will have no need of any explicit information about v0.]
The form of (5:B.2) is a Dirichlet series ; note that this becomes a power

series in ξ = e−π2t with only the k2 powers appearing: e−λkt = e−k2πt = ξk2
.

The theory of such series centers on the Müntz–Szász Theorem (extending
the Weierstrass Approximation Theorem) which, for our purposes, shows
that only quite special functions can have L2-convergent expansions (5:B.2)
when Σ1/λk <∞. One has estimates for (5:B.2) of the form

|c̃k| ≤ βk‖ϕ‖L2(0,∞)(5:B.4)

with the values of βk explicitly computable as an infinite product

βk =
√

1 + 2λk

∏
i6=k

∣∣∣∣∣1 +
1 + 2λk

λi − λk

∣∣∣∣∣(5:B.5)

(convergent when
∑

k 1/λk is convergent); note that 1/βk is the distance in
L2(0,∞) from exp[−λkt] to span {exp[−λit] : i 6= k}. L. Schwartz has further
shown that for functions given as in (5:B.2) one has

‖ϕ‖L2(0,∞) ≤ ΓT‖ϕ‖L2(0,T ).(5:B.6)

Combining these estimates shows that

‖v(T, ·)‖L2(0,1) ≤ CT ΓT‖ϕ‖L2(0,T )

C2
T :=

∑
k

[
βk

kπ

]2

e−2k2π2T

 .(5:B.7)
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The sequence βk increases moderately rapidly as k → ∞ but the exponen-
tials exp[−k2π2T ] decay even more rapidly so the sum giving C2

T is always
convergent and (5:B.7) provides a bound (‖A‖ ≤ ΓTCT <∞) for the obser-
vation operator15 A : M = M[0,T ] → L2(Ω) : ϕ 7→ v(T, ·), when T > 0 is
arbitrarily small.

A somewhat different way of looking at this is to note that the linear
functional: M→ IR : ϕ 7→ c̃k must be given by a function gk ∈ L2(0, T ) such
that ∫ T

0
gk(t)e

−λit dt = δi,k :=
{

0 if i 6= k,
1 if i = k.

(5:B.8)

If we think of gk(·) as defined on IR (0 off [0, T ]), we may take the Fourier
transform and note that (5:B.8) just asserts the ‘interpolation conditions’

ĝk(−jλi) =
√

2πδi,k (j =
√
−1)(5:B.9)

so it is sufficient to construct functions ĝk satisfying (5:B.9), together with the
properties required by the Paley–Wiener Theorem to get the inverse Fourier
transform in L2(0, T ) with ‖gk‖ = βk. This approach leads to the sharp
asymptotic estimate

ln ‖A‖ = O(1/T ) as T → 0,(5:B.10)

showing how much more difficult16 observability or controllability becomes
for small T , even though one does have these for every T > 0.

A variant on this would consider the interior point observation ϕ(t) :=
v(t, a). The observability properties now depend on number-theoretic prop-
erties of 0 < a < 1 — e.g., for rational a = m/n one gets no information
at all about ck when k is a multiple of n, since then sin kπa = 0. It can
be shown that one has bounded observability (with arbitrarily small T > 0)
for a in a set of full measure whereas the complementary set for which this
fails is uncountable in each subinterval.17 Finally, we note that an essentially

15We note at this point that a recent estimate by Borwein and Erdélyi makes it possible
to obtain comparable results when U has the form U = E ×{0} with E any subset of [0, T ]
having positive measure; one consequence of this is a bang-bang principle for time-optimal
constrained boundary control.

16This may be compared to the corresponding estimate: ‖A‖ = O
(
T−(K+1/2)

)
for the

finite-dimensional setting, with K the minimal index giving the rank condition there.
17Since the ‘bad set’ has measure 0, one might guess that observation using local integral

averages (as a ‘generalized thermometer’) should always work but, somewhat surprisingly,
this turns out to be false.
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identical treatment for all of the material of this subsection would work more
generally for (3:B.3) and with other boundary conditions.

5:C. Higher-dimensional geometries

For higher-dimensional cases, we note first that we can obtain observabil-
ity for any ‘cylindrical’ region Ω := (0, 1)× Ω̂ ⊂ IRd with U = (0, T )× [0× Ω̂]
by using the method of ‘separation of variables’ to reduce this to a sequence
of independent one-dimensional problems: noting that we have here

λk,` = k2π2 + λ̂` ek,`(x, x̂) = [
√

2 sin kπx]ê`(x̂),

we get

Avx(·, 0, ·) =
∑

`[A1ϕ`](x)e
−λ̂`T ê`(x̂),

with ϕ`(t) := eλ̂`t〈vx(t, 0, ·), ê`〉Ω̂
where A1 is the observability operator for (5:B.1). It is easy to check that
this gives ‖A‖ ≤ ‖A1‖ <∞ and we have nullcontrollability by duality.

For more general regions, when U is all of Σ := (0, T ) × ∂Ω we may
shift to the context of nullcontrollability for (5:A.1) and rely on a simple
geometric observation. Suppose we have Ω ⊂ Ω̃ ⊂ IRd where Ω̃ is some
conveniently chosen region (e.g., a cylinder, as above) for which we already
know that we have nullcontrollability for (5:A.1)̃, i.e., with Q, U replaced by
Q̃ = (0, T ) × Õm and Ũ = Σ̃ = (0, T ) × ∂Ω̃, respectively. Given any initial
data u0 ∈ L2(Ω) for (5:A.1), we extend it as 0 to all of Ω̃ and, as has been
assumed possible, let ũ be a (controlled) solution of (5:A.1)̃, vanishing on all
of Ω̃ at time T . The operator B acting (at Σ) on ũ will have some value, which
we now call ‘g’ and using this in (5:A.1) necessarily (by uniqueness) gives
the restriction to Q of ũ which vanishes at T . Thus, this g is a nullcontrol
for (5:A.1). As already noted, once we have a nullcontrol g for each u0, it
follows, as noted earlier, that the nullcontrol operator C for this setting is
well-defined and continuous; by duality, one also has bounded observability.
We do note that it is unnecessary that U be all of Σ here: this construction
works if the ‘unused’ part of Σ would be contained in Σ̃ \ Ũ .

At this point we note a deep connection between the theories for the wave
and heat equations:

observability for the wave equation wtt = ∆∆∆w for some [Ω, U ] and
some T ∗ > 0 implies observability for the heat equation ut = ∆∆∆u
for arbitrary T > 0 in the same geometric setting [Ω, U ].
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We now have the condition
∫
U gkzi exp[−λit] = δi,k (with zk := B̂ek),

corresponding to (5:B.8) for this higher-dimensional problem. When U would
have the form (0, T ) × U for a patch U ⊂ ∂Ω, one can take the Fourier
transform (in t only) and get, as with (5:B.9),

〈ĝk(−jλi, ·), zi〉U =
√

2πδi,k.(5:C.1)

D. Russell observed [5] that, if hk would be the function for the boundary
observability problem for the wave equation wtt = ∆∆∆w on Ω corresponding
to gk, one would have instead that

〈ĥ±k(±j
√
λi, ·), zi〉U =

√
2πδi,kδ±(5:C.2)

(where δ± = 1, 0 according as the occurrences of ± on the left do or do
not match), so the spatial dependence is identical and the time-dependence
closely related. This suggests constructing ĝk as

ĝk(τ, ·) := [h+k(σ) + h−k(σ)] /2 σ2 := jτ,

(noting that the rhs is an even analytic function of σ and so is an analytic
function of σ2), so that (5:C.2) would imply the desired (5:C.1). This does
not quite work, since it would not give gk ∈ L2(U), but can be modified,
multiplying by a suitable function R = R(τ) on the right, to get gk as an
inverse Fourier transform. We note that it is the construction of the mollifier
R(·) which gives the asymptotics (5:B.10); it is also this multiplication which
makes the implication above irreversible. We note that the relation used here
is also usable to obtain uniqueness results for a higher-dimensional version
of the identification problem of subsection 4:C from known corresponding
results for the wave equation.

One gets the observability for the wave equation for the heat equation)
for suitable18

[Ω, U ] by an argument [5], [7] based on Scattering Theory (existence of a
uniform decay rate for the portion of the total energy remaining in Ω when
this is embedded in a larger region Ω̃). In particular, one can take Ω̃ to
be the complement of a ‘star-shaped’ obstacle at which Bw = 0 provided
∂Ω \ U ⊂ ∂Ω̃ = ∂ (obstacle). On the other hand, there is a significant
gemetric restriction on on [Ω, U ] for which one can observe or control the

18Note that the finite propagation speed associated with the wave equation implies
existence of a minimum time T∗, depending on Ω, for observability/nullcontrollability.
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wave equation: there can be no ‘trapped waves’ (continually reflecting off
the unused boundary Ω \ U without ever intersecting U) which, roughly,
requires that ∂Ω \ U should be ‘visible’ from some single point outside Ω.

This argument then gives observability/controllability for the heat equa-
tion for a variety of geometric settings, but there is a price: the geometric
restriction noted above. This is quite reasonable for the wave equation but
seems irrelevant to the behavior of the heat equation and it was long con-
jectured that accessibility of an arbitrary patch U ⊂ ∂Ω would suffice for
observation or control of (1.1). Quite recently, G. Lebeau and L. Robbiano
have settled this conjecture by demonstrating — using an argument based
on new Carleman-type estimates for a related elliptic equation — patch null-
controllability using an arbitrary patch19 U for an arbitrary Ω.
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