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Abstract

The paper looks at some of the techniques (separation of variables,
Fourier series, Carleman estimates) used to obtain observability and null-
controllability results to determine qualitatively the asymptotic behav-
ior of the estimates obtained with respect to relevant parameters. We
are particularly concerned with blow-up as the control time becomes
short (T → 0).

1. Introduction
Most of the work done on observability or nullcontrollability for distributed

parameter systems refers to single settings, but increasingly one is interested
to consider the relation between a family of such problems depending on some
parameter (as, e.g., the coefficients of the equations or the length of the time
interval or a discretization mesh size). Our twin themes here — uniformity and
blow-up — are, of course, just the two possible alternatives in an investigation
of asymptotic behavior. Here, in looking at some of the techniques used to
obtain observability and nullcontrollability results, we will examine them more
carefully to determine the asymptotic behavior of the estimates obtained with
respect to relevant parameters.

We will be particularly concerned with blow-up as the control time becomes
short (T → 0) and so will restrict our attention to problems, as for the heat
equation, with no minimum control time. This question of blow-up as T → 0
was apparently introduced for distributed parameter systems in [26] (and only
later for finite dimensional systems in [30]) and has recently been the subject of
greater interest (cf., e.g., [33], [2], [3], [4], [5]) partly in response to Da Prato’s
observation [7] that this is relevant to the analysis of corresponding stochastic
differential equations.
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A few of the examples presented here are new, but many are relevant his-
torical examples revisited. These have largely been drawn from my own earlier
work, simply because of my greater familiarity with that. On the other hand,
the central position of references to [31] may be considered a shameless bit
of advertising for a result in nonharmonic analysis specifically designed for its
relation to the present concerns.

Consider an abstract linear autonomous system

ut = Au (1.1)

where we include the homogeneous boundary conditions in specification of the
domain of the operator A. Given observation of

y(t) = Bu(t, ·) for 0 ≤ t ≤ T, (1.2)

our principal concern here is with an observability estimate:

‖u(T, ·)‖ ≤ C‖y(·)‖. (1.3)

We speak of uniform observability for a family {(A,B, T )} of such problems
if (1.3) holds in each of the instances with a fixed constant C used for all the
problems considered.

It is well-known that (1.1), (1.2) is dual to the nullcontrollability problem
for the adjoint equation (after a time reversal):

vt = A∗v + B∗ϕ with v
∣∣∣
t=0

= ω (1.4)

Given ω, determine a nullcontrol ϕ on [0, T ] so that the solution of

(1.4) will satisfy: v
∣∣∣
t=T

= 0.

This duality means that one will have (1.3) if and only if for each ω one can
choose such a nullcontrol with

‖ϕ‖ ≤ C‖ω‖ (1.5)

— using the same constant C as in (1.3). Indeed, we will restrict our attention
here to settings in which the relevant spaces are Hilbert spaces and we can then
choose each nullcontrol ϕ to minimize the norm; the mapping C : ω 7→ ϕ for
each of the problems is then linear and continuous with operator norm ‖C‖ ≤ C.
We now speak of uniform nullcontrollability for a family of such problems if this
holds in each instance with a fixed nullcontrollability bound C.

PROPOSITION 1 Suppose we have a weak continuity property for the se-
quence of problems {(1.4)ν : ν = 1, 2, . . . ;∞} :

using ϕν in each (1.4)ν to get a solution vν ,
if ϕν ⇀ ϕ∞weakly, then also vν(T ) ⇀ v∞(T ).

(1.6)

Then, if the sequence {(1.4)ν : ν = 1, 2, . . .} is uniformly nullcontrollable, it
follows that the limit problem (1.4)∞ is also nullcontrollable, with the same
bound.
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Proof: In a Hilbert space context, for any ω the uniform bound on the se-
quence of nullcontrols {ϕν} gives a subsequence weakly convergent to some ϕ0

and by (1.6) this ϕ0 must be a nullcontrol for ω in (1.4)∞.

Complementary to this is an obvious blow-up result: if the limit prob-
lem (1.4)∞ is not nullcontrollable, then one must have blow-up: C = Cν → ∞
in (1.5). In particular, suppose one were to take Aν ,Bν fixed in (1.4)ν , but vary
the control time — more precisely, keeping the nominal time T fixed as there,
but restricting support of the control ϕν to t ∈ [0, Tν ] — then, if this can be
done with Tν → 0, any weakly convergent subsequence would necessarily give
convergence to f0 with empty support, clearly not a nullcontrol for any ω 6= 0.
Thus, if one does have nullcontrollability for arbitrarily short control times, this
bound must blow up as the time goes to 0.

The spectral approach to the observability estimate (1.3) utilizes spectral
decomposition of the operator A appearing in (1.1), making a spatial expansion
in eigenfunctions so time dependence is given by an exponential series. For
nullcontrollability, this is also known as the method of moments. This has been
a useful tool for treating distributed parameter systems since the earliest days
of the subject; note the papers cited here, especially the survey paper [23], and
the book [6].

Since the paper [31] was motivated precisely by our present concerns regard-
ing uniformity and blow-up in applying the spectral approach, we will devote
the next section to describing the principal results obtained there. Section 3 is
then devoted to discussing the spectral approach and some historical examples
of how it works out while Section 4 considers blow-up, mostly utilizing the spec-
tral approach but also noting the behavior of Carleman estimate techniques in
relation to our thematic concerns. The final section then discusses some further
recent results,

2. The ‘window problem’ for complex exponential series
Let Λ be a complex sequence {λk = τk + iσk} and consider functions of the

form:
f(t) =

∑
k

ckeiλkt. (2.1)

We think of these as ‘observed through the time window [0, T ]’ and topologize
this set of functionsM = MT (Λ) as a subset of L2(0, T ). The ‘window problem’
we consider here is then to determine the sequence of terms (evaluated at t = T ):

cT =
{
ckeiλkT

}
(2.2)

from observation of f(·) on (0, T ).
We will impose the following conditions on the exponent sequence Λ:

σk ≥ 0, (2.3)

uniform separation: for some r0 > 0, |λj − λk| ≥ r0 (j 6= k), (2.4)
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uniform sparsity: for some a > 0 and uniformly for λ∗ ∈ Λ, one has

#{λ ∈ Λ : 0 < |λ− λ∗| ≤ r} ≤ ν(r) ≡ a
√

r.
(2.5)

The principal result of [31], somewhat specialized to this form of ν, is then:

THEOREM 2 If the complex sequence Λ satisfies (2.3)–(2.5), then there is a
constant C = C(T,Λ) such that

∑
k

∣∣ckeiλkT
∣∣2 ≤ C2

∫ T

0

∣∣∣∣∣∑
k

ckeiλkt

∣∣∣∣∣
2

dt (2.6)

for all f, cT as in (2.1), (2.2). For the special form ν(r) = a
√

r used here
in (2.5), we have

C = C(T,Λ) ≤ AeB/T (2.7)

with positive constants A,B depending only on r0, a.

Thus, we necessarily have uniformity of the estimate over families {Λ} of such
exponent sequences for which we can use fixed r0, a and we have blow-up in the
estimate exponential to the order of 1/T as T → 0.

We note that the heart of the proof in [31] is a technical lemma.

LEMMA 3 For any T > 0 and any ν(r) = a
√

r there exists an entire func-
tion P (·) such that

• |P (z)| ≤ 1 on the upper half-plane C+ and is real and positive on the
imaginary axis, with a somewhat technical a-dependent lower bound for
P (is) when s ≥ 0

• P is of exponential type with∣∣∣e−i(T/2)zP (z)
∣∣∣ ≤ Ke(T/2)|z| (z ∈ C) (2.8)

• For real r one has a bound∣∣∣P (r)eν(|r|)
∣∣∣ ≤ C = C(a, T ). (2.9)

The constant C in (2.9) satisfies

C(a, T ) ≤ AeB/T (2.10)

for T near 0 (with a-dependent A,B).

The paper [31] actually considers f as observed on an interval [0, δ] although
the terms are evaluated at t = T , without necessarily taking δ = T as here. In
this, as in some other respects, we are simplifying the description here of the
results of [31] for our present convenience. In [31] the admissible functions ν(·)
are, more generally:
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continuous and unboundedly increasing, but with ν(s)/s2 decreasing
and integrable on [r0,∞).

Obviously the statements of Theorem 2 and Lemma 3 become more complicated
with more general admissible functions ν(·) for (2.5). For full details, of course,
see [31].

This approach is particularly effective for one-dimensional problems. We
can restrict ourselves here to taking ν(r) = a

√
r in (2.5) because the sequences

involved for our applications typically come from eigenvalues of Sturm-Liouville
problems and so are quadratically distributed, i.e., asymptotically like ck2. We
note, for example, that for the exponent sequence {λk = ck2} one has an easy
computation to obtain (2.5) with ν(r) =

√
2r/|c|.

It should be noted that with the restriction to ν(r) = a
√

r results like
Lemma 3 and Theorem 2 had been obtained earlier (cf., e.g., [20], [17], [19],
[9]) — except for consideration of the asymptotics (2.10), (2.7). As compared,
e.g., with [29], the particular innovation of Theorem 2 is the treatment of more
general complex exponent sequences, used here for Theorems 6 and 10.

3. Spectral methods; some history
We have already noted that spectral methods have long provided a useful

tool for treating control-theoretic questions for partial differential equations and
we sketch here some historical examples. While the original treatments referred
to a variety of background results on Dirichlet series and non-harmonic analysis
by Schwartz [24], Redheffer [20], Luxembourg and Korevaar [17], etc. — as well
as developing some additional theory themselves — it will be sufficient as well as
more convenient here to refer only to Theorem 2 as described in the preceding
section.

The ‘spectral approach’ to the observability estimate (1.3) for (1.1), (1.2)
utilizes a spatial expansion in eigenfunctions so the time dependence is given by
an exponential series. Thus, we assume the set of eigenfunctions {ek(·)} of A is
a Riesz basis so the solution u of (1.1) has an expansion:

u(t, ·) =
∑

k

akeαktek(·) (3.1)

where {αk} is the corresponding set of eigenvalues: Aek = αkek. Using (3.1)
in (1.2) then gives an exponential series for the observation as a function of t:

y(t) =
∑

k

ckeαkt (3.2)

where
ck = βkak (βk = Bek) . (3.3)

Suppose, now, y(·) is scalar and one has a uniform lower bound

|βk| ≥ κ > 0 so K1 = sup
k
{1/|βk|} ≤ 1/κ < ∞ (3.4)
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and also suppose the sequence {αk = iλk} is such that Theorem 2 applies to the
exponential series (3.2). Using (3.1) for t = T and recalling (3.3) (so ak = ck/βk)
and that {ek(·)} is a Riesz basis, we then have

‖u(T, ·)‖2 ≤ K2
∑

k

∣∣akeαkT
∣∣2 = K2

∑
k

∣∣∣∣ ck

βk
eiλkT

∣∣∣∣2
≤ K2[sup

k
{1/|βk|}]2

∑
k

∣∣ckeiλkT
∣∣2

≤ (CKK1)2‖y(·)‖2L2(0,T )

(3.5)

which is just (1.3) with the bound as given by (2.6), apart from the fixed con-
stants K, K1.

While our original consideration was the observability map: y 7→ u(T, ·), we
note that the spectral method has factored this as

y 7→ cT =
(
cke−αkT : k = 1, . . .

)
7→

∑
k

(1/βk)cke−αkT ek = u(T, ·).

This use of Theorem 2 for (3.2) requires the sparsity condition (2.5), which
is plausible only for one-dimensional settings. We do note, however, that a
separable setting (e.g., for a cylindrical [product] region Ω = (0, 1) × Ω∗) can
reduce the problem to a collection of one-dimensional problems. Suppose the
eigenfunctions of A were to have the form of products {ek(x)f`(x∗)} (with {f`}
orthonormal for simplicity). We then can replace (3.1), (3.2) by

u(t, ·) =
∑
k,`

ak,` eαk,` t ek(·)f`(·)

y(t, ·) =
∑

`

y`(t)f`(·)

with y`(t) =
∑

k

ck,` eαk,` t

(3.6)

where we assume B acts only at the base Γ = {0}×Ω∗ with B[ekf`] = [Bek]f` =
βkf` so (3.3) becomes ck,` = βkak,` and we continue to assume (3.4). We may
then consider each problem` separately: as in (3.5) we get

‖u`(T, ·)‖2 ≤ (C`KK1)2‖y`(·)‖2L2(0,T )

with
u`(t, ·) = 〈f`, u(t, ·)〉 =

∑
k

ak,`e
αk,` tek(·)

so
‖u(T, ·)‖2 =

∑
`

‖u`(T, ·)‖2

≤ [(KK1) max
`
{C`}]2

∑
`

‖y`‖2

= Ĉ2‖y‖2L2([0,T ]×Γ)

(3.7)
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with existence of max`{C`} giving Ĉ corresponding to a requirement of uniform
observability for the family {problem`}.

Going back to the 1960’s, we begin by following [18] in considering boundary
observation at x = 0 for the one-dimensional heat equation

ut = uxx on (0, 1) with u = 0 at x = 0, 1 (3.8)

In the absence of information about the initial state
(
u
∣∣∣
t=0

)
, we observe the

endpoint heat flux, y(t) = ux(t, 0), for an interval 0 ≤ t ≤ T and wish to
determine the terminal state

(
u
∣∣∣
t=T

)
. More specifically, we seek an estimate

∫ 1

0

|u(T, x)|2 dx ≤ C2

∫ T

0

|ux(t, 0)|2 dt (3.9)

for solutions of (3.8), since that estimate ensures the observability. To obtain
(3.9), we use the spectral approach as in the preceding section.

The operators here corresponding to A,B in (1.1), (1.2) are the Sturm-
Liouville operator A : z 7→ z′′ with homogeneous Dirichlet boundary conditions
(so the eigenvalue sequence is {αk = −π2k2} with the orthonormal basis of
corresponding eigenfunctions {ek(x) = (1/

√
2) sin kπx}) and B : z 7→ z′(0)

(giving βk = kπ/
√

2 so we obviously have (3.4) with K1 = 1). As was remarked
in the previous section, the exponent sequence {λk = iπ2k2} satisfies (2.3)–(2.5)
so it follows immediately from Theorem 2 that we have (2.6). Thus we have
(3.5), (1.3) — i.e., (3.9).1

Already in [18] the argument via (3.6) was noted for the heat equation on a
cylindrical region Ω = (0, 1)× Ω∗— although the uniformity of the component
one-dimensional problems was neither noted nor even noticed, since one had
eigenvalues αk,` = −π2k2 − α̂` where {−α̂`} is the eigenvalue sequence for the
Laplacian on the cross-sectional region Ω∗, which permitted simple absorption
of the factors e−α̂`T < 1 in the estimation. The first problem which explicitly
required2 consideration of uniformity for the estimates of a family of quadrati-
cally distributed exponent sequences was the treatment of the heat equation on
a sphere [19], [9] by way of separation of variables for the spherical Laplacian.
This is along the lines of (3.6) above, but required some concern for the zeroes
of Bessel functions to verify the necessary uniformity in (2.4), (2.5).

1This is so much easier now than it seemed in the late 1960’s! Indeed, at that time
the corresponding nullcontrollability result was obtained by an independent direct argument
(cf., [8], solving a moment problem to construct the control), rather than by an appeal to the
now-standard duality.

2In a sense this was not required, but was only an artifact of proofs by way of separation
of variables for the Laplacian on a sphere along the lines of (3.6) above. At the time of
[19], for example, one had available neither the deep arguments of [21], [22] nor even the
more elementary observation [25] that (in the nullcontrollability context) one could obtain
boundary nullcontrollability for a general bounded region Ω by embedding Ω in a large box
or cylinder (for which the expansion could be treated as here) and then using as control the
trace on ∂Ω of that nullcontrolled solution.
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A rather different kind of spectral approach was used by Russell, avoid-
ing the necessity to use spatial separation of variables to decompose into one-
dimensional problems by deriving observability/nullcontrollability results for the
heat equation from similar results for the corresponding wave equation (which
were then obtained by using scattering theory, etc.).

THEOREM 4 On a spatial domain Ω, consider a second-order (wave) equa-
tion for w = w(t̃, x):

wt̃t̃ + A2w = 0 (0 ≤ t̃ ≤ T̃ ) (3.10)

where A is a positive operator (as, e.g., (−∆)1/2) and assume that, for a suitable
observation operator B, one has an observability estimate

‖Aw(T̃ )‖2 + ‖wt(T̃ )‖2 ≤ C̃2

∫ T̃

0

‖Bw(t)‖2 dt (3.11)

for solutions of (3.10). If one considers the corresponding heat equation for the
same Ω:

ut + A2u = 0 (0 ≤ t ≤ T ), (3.12)

then one also has observability, using the same B, for arbitrarily small T > 0
with a corresponding observability estimate

‖u(T )‖2 ≤ C2

∫ T

0

‖Bu(t)‖2 dt. (3.13)

Proof: See [21], [22]; compare also [27]. One notes that the Fourier trans-
forms in t of (3.10), (3.12) are

−τ̃2ŵ + A2ŵ = 0, iτ û + A2û = 0

so — formally — the equations can be related in the Fourier domain by sub-
stituting τ = τ̃2. This permitted Russell to use Fourier transform techniques,
especially the Paley-Wiener Theorem, to obtain (3.13) from (3.11). The tech-
nical lemma needed to justify the formal procedure was a version of Lemma 3,
above, although without (2.10). Essentially, (2.9) justifies that the relevant func-
tionals will transform legitimately (in L2) while (2.8) ensures that the kernels
have support in [0, T ].

The spectral approach (with reduction to one-dimensional problems) has
also been used for partial differential equations other than the heat equation.

THEOREM 5 For the Euler plate equation

utt + ∆2u = 0 on Ω = (0, 1)2,
uν = 0 = (∆u)ν on ∂Ω.

(3.14)

one has boundary observability — and so controllability, by duality — for ar-
bitrarily short times T > 0, using the observation of y(t, x2) = u(t, 0, x2) for
0 < x2 < 1 and 0 < t < T .
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Proof: See [14], [29]. The boundary conditions selected have the consider-
able advantage of making the problem separable and permitting explicit com-
putation so this problem can be treated as in the double expansion (3.6), with

ek(x1) = (1/
√

2) cos πkx1, f`(x2) = (1/
√

2) cos π`x2.

We then obtain the expansions

u(t, ·) =
∑

`

u`(t, ·)ϕ`(·)

with u`(t, ·) =
∑
k,±

a[k,±],`e
±iπ2[k2+`2] tek(·)

y(t, ·) =
∑

`

y`(t)f`(·)

with y`(t) =
∑
k,±

c[k,±],`e
±iπ2[k2+`2] t.

where, for this observation, c[k,±],` = a[k,±],`. For each ` one has the exponent
sequence

Λ` =
{
λ`

k,± = ±π2
[
k2 + `2

]}
and one easily verifies (2.4), (2.5) for these sequences, uniformly in `. Thus
Theorem 2 applies to give (3.7) and so the desired observability.

4. Blow-up
We have already noted as a corollary to Proposition 1 that nullcontrols

associated to control times T → 0+ cannot remain bounded. The question
of determining the asymptotic blow-up rate (e.g., for boundary control of the
one-dimensional heat equation) was raised as far back as the mid-1970’s in [26]
— although with the wildly optimistic conjecture that this blow-up rate was
O(1/

√
T ) as T → 0. [It is interesting that this question of blow-up rates was

considered for distributed parameter systems before the corresponding question
had been raised for finite dimensional control problems.] The finite dimensional
case, however, now seems quite well understood [30], [32]; see also [33]. The
infinite dimensional case remains fertile ground for further investigation.

By the mid-1980’s the incorrect conjecture in [26] had been somewhat cor-
rected: the paper [28] kept track of the relevant ‘constants’ in the treatment
in [20] and obtained, as an eO(1/T ) upper bound on the blow-up rate for the 1-D
heat equation (3.8). This was complemented by Güichal’s computation [11] of
a lower bound with the same asymptotic behavior. Thus, at least for (3.8), it
is now known that the correct asymptotics as T → 0 are precisely ‘exponential
to order of 1/T ’. We may note that use of Theorem 2 in the analysis in the
previous section already provides, through (2.7), an upper bound exponential
to order of 1/T for each of the problems discussed there: for example, again
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for (3.8), we may note that the constant C appearing in (3.9)=(1.3) was exactly
the constant obtained in (2.6) and so satisfies (2.7) by Theorem 2. The same
use of (2.7) applies also to the other heat equation problems considered there.
In particular, we note that, while Theorem 4 did not include any condition of
the asymptotics as T → 0, the inclusion of (2.10) in Lemma 3 now provides the
blow-up rate

C(a, T ) ≤ AeB/T C̃ in (3.13) (4.1)

(with a-dependent A,B). As an example other than the heat equation, we also
recall the treatment above of the Euler plate equation (3.14). Apart from the
necessary uniformity of the one-dimensional problems, the treatment above and
in [29] gives the now-familiar eO(1/T ) blow-up as T → 0.

We might next consider observability for the equation

utt − 2κ∆ut + ∆2u = 0 on Ω = (0, 1)2

uν = 0 = (∆u)ν on ∂Ω
(4.2)

describing a structurally damped Euler plate; one can also write this as a first-
order system

Ut = AU with A = (−∆)M, M =

[
0 1

−1 −2κ

]
. (4.3)

Boundary control for this plate model problem was considered by Hansen in [12]
— and is also described in Section 6 of [31], specifically devoted to some appli-
cations to distributed parameter system theory, since (apart from the facility of
obtaining the required observability estimate from a general result) the use of
Theorem 2 automatically provides the blow-up estimate (2.7) for this problem
as for (3.14).

THEOREM 6 For the structurally damped Euler plate model (4.2) with3 damp-
ing coefficient 0 < κ < 1, consider observation of y = u

∣∣∣
x1=0

for 0 < t < T .

Then we have observability with an observability estimate[∫ 1

0

∫ 1

0

(
|∆u|2 + |ut|2

)
dx1dx2

]1/2

≤ AeB/T

[∫ T

0

∫ 1

0

|u(t, 0, x2)|2 dx2dt

]1/2

.

(4.4)

Proof: Note that the eigenvalues of A are ξ±π2[k2 + `2] where the eigen-
values of M are ξ± = −κ± i

√
1− κ2. Much as for the treatment of (3.14), one

gets a family of exponent sequences for (2.1)

Λ` =
{
λ`

k,± = −iξ±π2
[
k2 + `2

]}
,

3There is no new difficulty as κ → 0, for which one just gets (3.14) in the limit. We do
note, however, that one must have blow-up as κ → 1, when the eigenvalues and eigenvectors
of M degenerate, but we will discuss here only the blow-up rate as T → 0 and not for this.
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but here this sequence no longer lies on the real axis: instead, each of the
resulting one-dimensional problems here involves a complex exponent sequence
with each Λ` the union of two copies of a quadratically distributed sequence
placed along the rays {[±

√
1− κ2 + iκ]τ : τ > 0}. That geometry is discussed

in [31] and one easily verifies (2.3) and that such a union continues to satisfy the
conditions (2.4), (2.5) and that the relevant shifts leave the same ν(·) uniformly
applicable. Thus Theorem 2 gives the desired uniform estimate. That estimate
was, of course, obtained by Hansen. Section 6 of [31] observes that use of
Theorem 2 automatically provides the blow-up estimate (2.7) for this problem
as was noted earlier for (3.14).

Other approaches Above we have been considering applications of the
spectral expansion approach, using Theorem 2 to obtain blow-up estimates. We
will not discuss this here, but note that weighted energy estimates have also
been effectively used to this end: cf. [2], [3], [4], [5]. We note, at this point,
that finite dimensional results of [30], [33] have also proved directly applicable
for distributed parameter systems; cf., e.g., [16].

There are also, of course, a variety of situations in which observability re-
sults seem unavailable by any use of spectral expansions and have only been
obtained through the use of Carleman estimates. For the heat equation ut = ∆u
alone, these situations include most of the known results about observabil-
ity/nullcontrollability with interaction restricted to a small patch as well as
for variants with variable coefficients. Three things become clear from, e.g., a
look at the book [10]:

• this is a powerful approach to these observability/controllability problems,

• the dependence of the estimate on the coefficients is only through certain
bounds on coefficients and their derivatives and so is uniform over relevant
classes of equations, and

• the calculations of these Carleman estimates is messy enough4 to make it
difficult to track any time dependence so as to obtain an estimation of the
blow-up rate.

Apparently no such estimation has previously been done, but, at least for the
heat equation, we have verified [15] the blow-up rate for the patch control set-
tings which rely on Carleman estimates.

THEOREM 7 Consider the patch nullcontrollability problem for the heat equa-
tion:

ut −∆u = ϕ = control on Q = [0, T ]× Ω
u = 0 on Σ = [0, T ]× ∂Ω

u = u0 on Ω at t = 0

(4.5)

4The forthcoming treatment [1] makes the Carleman calculations somewhat more trans-
parent in the case of the heat equation, but these still remain formidable.
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with the spatial support of the control ϕ restricted to a specified patch ω (so
ω 6= ∅ is open with compact closure in the bounded, connected, open domain Ω).
There are then constants A,B depending only on Ω, ω, T∗ such that:

For each 0 < T < T∗ and each initial state u0 ∈ L2(Ω) there exists a
nullcontrol function ϕ ∈ L2([0, T ] × ω) — i.e., the solution of (4.5) satisfies
u(T, ·) ≡ 0 — such that

‖ϕ‖L2([0,T ]×ω) ≤ AeB/T ‖u0‖L2(Ω). (4.6)

Proof: See [15]. As usual, one works with the dual observability problem.
Following the Carleman calculations in [1], one can track the T -dependence
with a careful T -dependent scaling of the parameters to obtain an estimate
of Carleman type for the observability problem, with a constant independent
of T > 0. It is in going from that bound to the observability estimate that we
now obtain the anticipated estimate of the now familiar form: eO(1/T ).

5. Some more recent results
We begin this section by mentioning another result presented in Section 6

of [31]. The intent here was to be able to consider homogenization of a control
problem — so we are interested in considering q = q(x, x/ε) with ε → 0+. Such
a rapidly varying q might correspond physically to heat dissipation by a closely
spaced array of fins. One expects, in this setting, that q(·, ·/ε) ⇀ q0(·) so, as
the weak continuity hypothesis is easy to verify here, Theorem 1 would apply.
[Eventually one might wish to use techniques like those of [27] to show a stronger
continuity for the controls as ε → 0 so as to justify use of the limit control as a
good approximation to the control associated with a problem involving a rapidly
varying coefficient, but at present we only inquire as to uniform observability.]

THEOREM 8 Consider the observation problems

ut = uxx − qu (0 < x < `)

ux

∣∣∣
x=0

≡ 0, u
∣∣∣
x=`

≡ 0
(5.1)

with unspecified initial data. We now observe z(t) = u(t, 0) for 0 ≤ t ≤ T
and seek to determine u(T, ·). With spatially varying coefficients q(·) (subject
to a uniform bound: |q| ≤ M) we have a uniformly observable family of ob-
servation problems — whence, also, we have uniform nullcontrollability for the
corresponding family of dual boundary nullcontrol problems.

Proof: See [31]. Most of the effort consists of showing, by use of the
Courant Minmax Theorem, that the bound |q| ≤ M ensures that the condi-
tion (2.5) holds uniformly and then showing (by a compactness argument) that
(2.4) also holds uniformly.

12



Next we note a new result in the same spirit about finite difference approxi-
mations for the problem considered earlier for (3.8). We take an equally spaced
mesh on [0, 1] with N − 1 interior nodes {xj = xN

j = j/N : j = 1, . . . , N − 1}
spaced h = 1/N apart and let u = uN be the vector in IRN−1 with entries
uj = uN

j intended to approximate the values u(·, xN
j ). Using the standard cen-

tral difference approximation to the (spatial) second derivative but keeping time
continuous, the partial differential equation (3.8) becomes a finite dimensional
system of ordinary differential equations

u̇j = [uj−1 − 2uj + uj+1]/h2 (j = 1, . . . , N − 1) (5.2)

where, corresponding to the boundary conditions u(t, 0) = 0 = u(t, 1), we are
taking u0 = 0 = uN — i.e., in (5.2) we take uj−1 = 0 for j = 1 and uj+1 = 0
for j = N − 1.

While ultimately we might seek to show convergence for the controls, our
present concern is only to show uniformity for the relevant family of dual ob-
servability problems:

Observe the ‘boundary flux’ y = yN = [u1 − u0]/h = NuN
1 for

0 ≤ t ≤ T and, without knowledge of the initial data, reconstruct
the terminal state uN (T ).

As earlier (compare (3.9)), we seek an estimate

(1/N)
N−1∑
j=1

∣∣uN
j

∣∣2 ≤ C2

∫ T

0

∣∣NuN
1 (t)

∣∣2 dt. (5.3)

THEOREM 9 For the finite difference approximations (5.2) to the observabil-
ity problem for (3.8), the estimate (5.3) holds uniformly, so C is independent
of N , i.e., as the mesh spacing h → 0.

Proof: The relevant exponent sequence ΛN , here, is the finite sequence
of eigenvalues of the standard tridiagonal matrix corresponding to the central
difference scheme used in (5.2). It is not too difficult to obtain these eigenval-
ues and the corresponding eigenvectors explicitly: much as for the continuous
problem (3.8) we have

(eN
k )j = αN sin kπj/N (j = 1, . . . , N − 1)
σN

k = 2N2(1− cos kπ/N)
(5.4)

for k = 1, . . . , N − 1 (with the normalizing constant α ≈ 1/
√

2).
Since ΛN is a finite sequence, it is trivial that (2.3)–(2.5) will hold for each N

and, indeed, we would have the stronger finite dimensional blow-up results of
[30], [32]. Our concern is to verify that the separation condition (2.4) and
the sparsity condition (2.5) hold uniformly. For (2.4) one need only bound
2N2[cos 2π/N−cos π/N ] away from 0, which is easy. For any choice of r in (2.5),
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we separately consider the two cases: N2 ≤ 2r and 2r < N2. For the first case,
since there are only N − 1 eigenvalues altogether, we have

νN (r) = #{σN
j ∈ [σ∗ − r, σ∗ + r]} < N ≤

√
2r.

For the second case we see that νN (r) = k means that σN
k ≈ 2r so, setting

s =
√

r/N < 1/
√

2, we have (1− cos kπ/N) ≈ s2 and cos−1(1− s2) ≈ kπ/N =
kπs/

√
r which gives

νN (r) = k ≈ cos−1(1− s2)
πs

√
r.

Since (1/s) cos−1(1 − s2) is bounded on (0, 1/
√

2], we have a uniform bound
on a appearing in (2.5) for either of the cases and our result then follows from
Theorem 2.

Finally, we announce a new result [16] for boundary observability of a ther-
moelastic plate, here taken to be governed by the system of coupled partial
differential equations on Q = [0, T ]× Ω

wtt + ∆2w − α∆ϑ = 0
ϑt −∆ϑ + α∆wt = 0

on Q = [0, T ]× Ω

w,∆w, ϑ = 0 on Σ = [0, T ]× ∂Ω

(5.5)

with coupling constant α > 0. Much as for (4.3), this can be put in first-order
form as

Ut = AU with A = (−∆)M, M = M(α) =

 −1 0 −α

0 0 −1
1 −α 0

 (5.6)

for U = [ϑ,−∆w,wt]T, embedding the boundary conditions in specification of
the Laplacian as an operator on L2(Ω). We consider a cylindrical region Ω =
[0, 1]× Ω∗ and, as with (3.8), wish to observe the boundary flux at the base of
the cylinder Γ = {0} × Ω∗

y(t, ·) = [−∂ϑ(t, ·)/∂x1]
∣∣∣
x=0

= [−1, 0, 0] · Ux1(t, 0, ·) (5.7)

and use this to determine the full state U . This determination is clearly impos-
sible when the equations are uncoupled (α = 0), so we must have blow-up both
when α → 0 and when T → 0.

THEOREM 10 For the coupled thermoelastic plate model (5.5), (5.6) with
observation (5.7), one has observability with an estimate[∫ 1

0

∫ 1

0

(
|ϑ(T, ·)|2 + |[∆w](T, ·)|2 + |wt(T, ·)|2

)
dx1dx2

]1/2

≤ AeB/T

[∫ T

0

∫ 1

0

|ϑx1(t, 0, x2)|2 dx2dt

]1/2

.

(5.8)
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where A = A(α), B = B(α) are bounded for α in compact subsets of (0,∞) with
B bounded and A = A(α) = O(1/α) as α → 0.

Proof: See [16]. We briefly sketch the argument, much along the lines
noted above for Theorem 6. We here obtain the expansions

U(t, ·) =
∑

`

U`(t, ·)ϕ`(·)

with U`(t, ·) =
∑
j,k

a[j,k],`e
ξj [π

2k2+µ`] tVjek(·)

y(t, ·) =
∑

`

y`(t)f`(·)

with y`(t) =
∑
j,k

c[j,k],`e
ξj [π

2k2+µ`] t.

(5.9)

where {(ξj , Vj) : j = 0, 1, 2} are the eigenpairs for M = M(α) and {µ`} is the
spectrum of the cross-sectional Laplacian (i.e., −∆ for Ω∗ so µ` > 0). Note
that (5.7) gives, much as for (3.3),

c[j,k],` = β[j,k]a[j,k],` β[j,k] = πk[−1, 0, 0] · Vj . (5.10)

To proceed, one first shows that the eigenvalues of M are distinct — one real
(j = 0) and a conjugate pair — with negative real parts. There is thus a basis
of C3 consisting of eigenvectors of M— not orthonormal, since the matrix M is
not normal, but a controllability/compactness argument gives uniformity in α
of the norm equivalence of these coordinates to the usual Euclidean norm for
C3. Since spectral asymptotics show the first components of V1, V2 are roughly
proportional to α for α near 0, (5.10) gives

K1 = K1(α) = max
[j,k]

{1/|β[j,k]|} = O(1/α) (5.11)

as α → 0. Each of the relevant exponent sequences now is the union of
quadratically distributed sequences placed along the three rays in C given by
{−iτξj : τ > 0}. Following the discussion in [31] it is again not difficult to
verify (2.3) and that the conditions (2.4), (2.5) hold uniformly in `. As with
our previous results, this suffices for applicability of Theorem 2 to obtain (5.8),
with the blow-up estimate: A(α) = O(1/α) as α → 0 following from (5.11).

In connection with (5.5) it is also interesting to consider the use of observa-
tion of ϑ (or other of the state components) in all of Ω, rather than only the
boundary, for determination of the full state. This turns out to be much closer
in its nature (O(T−[k+1/2]) estimate) to the finite dimensional analysis in [30].
A direct application of that analysis also appears in [16] (including discussion
of the α asymptotics) along with a parallel application of the weighted energy
approach introduced in [2]–[5] (which has the advantage here of applicability
to more general boundary condition); note also the treatment of this problem
in [33].
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