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1. Introduction
Our principal concern will be with the ‘bang-bang’ property for time-

optimal boundary control of the 1-dimensional heat equation

ut = uxx (0 < t < T, 0 < x < 1)

u(·, 0) = ϕ = control, u(·, 1) = 0

u(0, ·) = ω0 ∈ X0 = L2(0, 1).

(1.1)

[Here we will assume a pointwise control constraint and then will say that
ϕ has the ‘bang-bang’ property if it takes only extremal values.] We note
at this point (cf., Remark 4.1) that the previously known results [12], [8] on
the ‘bang-bang’ property for time-optimal control of (1.1) are incomplete in
that their hypotheses impose conditions on the target state which turn out
to be extraneous for the ‘bang-bang’ property per se; our focal goal will be
the removal of such restrictions.

To this end, we will introduce an abstract formulation of the problem,
following [14] in spirit if not quite in detail, and prove a general abstract result
(Theorem 2) which, in the context of (1.1), reduces the problem to a question
of independent interest: exact nullcontrollability for (1.1) when ϕ is restricted
to L∞(E) for an arbitrary set E of positive measure in [0, T ]. The argument
for the latter (Theorem 5) is based on a recent result in nonharmonic analysis
by P. Borwein and T. Erdélyi [2], [3].

We begin with the observation that there are really two quite distinct
versions of the time-optimality problem in control theory:

• immediately initiate control so as to reach the goal as early as possible;

• reach the goal by a fixed time T while delaying initiation of active
control to as late as possible.

The first of these is usually taken as the standard statement of the prob-
lem but, much as in [14], it will be more convenient here to use the second
version for our abstract formulation. We do observe that the two versions
are clearly equivalent when the problem is autonomous (with suitable initial
conditions). It is also worth emphasizing that (still when the problem is
autonomous) the construction used in the proof of the ‘abstract bang-bang
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principle’, Theorem 2, below, could equally well be used directly for a proof
of the ‘bang-bang’ property in the context of ‘version 1’, with no restriction
on the initial data.

In the context of ‘version 2’, we adjoin to (1.1) the target condition that
the profile at time T belong to a prescribed set

u(T, ·) ∈ ST(1.2)

and formulate the time-optimality problem as finding a pair (ϕ, τ) which
maximizes τ subject to the admissibility constraints that, for a given set-

valued function A : [0, T ]→ 2IR, one has

(i) ϕ(t) = ϕ∗(t) = given for 0 ≤ t < τ

(ii) ϕ(t) ∈ A(t) for τ ≤ t ≤ T

(iii) the solution u of (1.1) using this control ϕ

satisfies (1.2).

(1.3)

We interpret ϕ∗ as a ‘trivial’ or ‘passive’ control (e.g., ϕ∗ ≡ 0) so τ represents
the time at which we initiate ‘active’ control and maximizing τ is just min-
imizing the duration (T − τ) of the actively controlled interval. [If ω0 = 0,
ϕ∗ ≡ 0, then (1.1) gives u(τ, ·) = 0 so, if also A(t) were independent of t, we
could translate [τ, T ] to [0, T −τ ] to get the usual ‘earliest arrival’ (version 1)
for this autonomous problem.] Concerning the set function A(·), we assume
that

a(t), b(t) ∈ A(t) and a(·), b(·) ∈ L∞(0, T )

for a(t) := min{A(t)}, b(t) := max{A(t)}.
(1.4)

We emphasize that to obtain the ‘bang-bang’ property we need impose
no hypotheses whatsoever on the data {ω0, T, ST , ϕ∗} beyond the implicit
assumption that such a time-optimal control does exist. We do note that
the usual argument gives existence of an optimizer in the setting above with
ST = {ωT}, provided only that the data are compatible (i.e., there is some
control satisfying (1.3)) — and this ‘reachability’ is the only restriction to be
imposed regarding the target state ωT in XT = L2(0, 1).

For (1.1), (1.2) with ST = {ωT}, (1.3-ii) with (1.4), we will show that

pointwise ae on [τ, T ], the values of any time-optimal control ϕ
must be either ϕ(t) = a(t) or ϕ(t) = b(t), with a, b as in (1.4-ii),
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and that this time-optimal control ϕ is unique. Note that in this situation
the control ϕ is a scalar function of t and this strongly affects the ease with
which we can use Theorems 1, 2 to obtain such a ‘bang-bang’ property. We
will, however, comment in Section 4 on the related situation in which one
has control at both ends of the interval so

u
∣∣∣
x=0

= ϕ1, u
∣∣∣
x=1

= ϕ2(1.5)

and the control ϕ := (ϕ1, ϕ2) is then an IR2-valued function on [0, T ].

2. Evolutionary abstract control systems
We begin by recalling from [14], in slightly modified form, the notion of

an evolutionary abstract control system. Consider I0 := [0, T ] as an order
category, i.e., writing I = I ′I ′′ for I = [r, t] means I ′′ = [r, s], I ′ = [s, t]
with 0 ≤ r ≤ s ≤ t ≤ T ; let (X ,E) be a functor from I0 to the category of
Banach spaces and continuous linear maps so I = [r, t] gives EI : Xr → Xt
with I = I ′I ′′ implying EI = EI′ ◦ EI′′ —i.e.,

Er,t = Es,tEr,s : Xr → Xs → Xt for r ≤ s ≤ t.(2.1)

In general, E·· represents uncontrolled system evolution for a possibly non-
autonomous well-posed problem. Next we asociate control spaces UI = Ur,t
to the intervals I = [r, t] ⊂ I0. We always think of each UI as a space of
functions defined on I — e.g., UI = L2(I) — so when I = I ′I ′′ we may
decompose ϕ ∈ UI into a pair of functions (ϕ′, ϕ′′), defined on I ′ and I ′′,
respectively, by restriction maps ΩΩΩ′, ΩΩΩ′′. We then ask that ϕ′ = ΩΩΩ′ϕ ∈ UI′
and ϕ′′ = ΩΩΩ′′ϕ ∈ UI′′ . The control maps Cr,t : Ur,t → Xt must satisfy the
obvious identity

Cr,t = Cs,tΩΩΩ
′
s + Es,tCr,sΩΩΩ

′′
s(2.2)

for any such decomposition (any choice of s ∈ [r, t]).
Given any Banach space V with an injection IV : V → UI — so we may

think of V as consisting of functions with support in (some specified subset
of) I = [t, T ] — we say that V has the nullcontrollability property and write
V ∈ NCt,T if there is a nullcontrol v ∈ V for each ‘initial state’ in Xt, i.e., if

For each x = xt ∈ Xt there is some v ∈ V such that

Et,Tx+ CVv = 0 (CV := Ct,T IV) .
(2.3)
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[Clearly, if V ∈ NCt,T for some V ↪→ UI , then UI ∈ NCt,T . We recall
Theorem 1 of [14]: If Ut,T ∈ NCt,T , then Ks = K0

t for all s ≤ t, where
Ks := R(Es,T ) +R(Cs,T ) and K0

s := R(Cs,T ).] Slightly more delicate than
(2.3), but useful later, is the restricted nullcontrollability property : we write
V ∈ NC r

t,T if

For each x ∈ R(C0,t) ⊂ Xt there is some v ∈ V such that

Et,Tx+ CVv = 0,
(2.4)

i.e., we are restricting initial states in (??) to R(C0,t).
We will need the following result, which we present in full although the

argument is already known in somewhat different contexts.

THEOREM 1: If V ∈ NCt,T , (respectively, V ∈ NC r
t,T ) then there is a

constant KV such that v in (2.3) (respectively, in (2.4)) may be chosen with
‖v‖V ≤ K‖x‖Xt for any K > KV ; dually, if V ∈ NCt,T one has

‖E∗t,T ξ‖X ∗t ≤ KV‖C∗V ξ‖(2.5)

for ξ ∈ X ∗T with the V∗-norm on the right. Conversely, if V contains a dual
space (W∗ ⊂ V) and C∗V ξ ∈ W for a dense set D of ξ ∈ X ∗T , then (2.5) —
using the W-norm on the right for ξ ∈ D — implies that V ∈ NCt,T .

Proof: For brevity we now write simply E for Et,T and C for CV :=
Ct,T IV . Clearly, V ∈ NCt,T is equivalent to range containment:

R(E) ⊂ R(C) =: K0(V) ⊂ XT .

Set V̂ := V/N (C) with an injective induced map Ĉ : V̂ → XT (i.e., Ĉv =
CV v̂ for v ∈ v̂ ∈ V̂) and let

Γ := {(x, v̂) : Ex+ Ĉv̂ = 0} ⊂ Xt × V̂ .

Note that Γ is a subspace and is the graph of a linear map L = LV : Xt → V̂
which is well-defined on all of Xt by (2.3) and the injectivity of Ĉ. Since Γ is
closed (as E, Ĉ are continuous), it follows that LV is bounded, by the Closed
Graph Theorem, and the bound on ‖v‖ with KV = ‖L‖ follows from the
definition of the quotient space norm on V̂ . Simply replacing Xt by R(C0,t)
in the argument above now gives the bound when V ∈ NC r

t,T . To obtain (2.5)
when V ∈ NCt,T , we note that the construction of L gives

E = −ĈL so, dually, E∗ = −L∗Ĉ∗
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with L∗ : V̂∗ → Xt∗. We then have ‖L∗‖ = ‖L‖ =: KV and, since 〈Ĉ∗ξ, v̂〉 =
〈C∗ξ, v〉 for v ∈ v̂ ∈ V̂ and ξ ∈ XT ∗, this gives (2.5).

For the converse, consider any η ∈ C∗D — i.e., η = C∗ ξ for some ξ ∈
D ⊂ X ∗T — we can set ζ := −E∗ξ, noting that if ξ is non-unique (so also
η = Cξ′ with ξ′ ∈ D) then (2.5) ensures that ‖E∗(ξ − ξ′)‖ = 0 so ζ is
well-defined. Now, arbitrarily fixing x = xt ∈ Xt , we consider

Φ : η 7−→ 〈x, ζ〉 = −〈x,E∗ξ〉

for such η. It is clear that the functional Φ is linear on C∗D ⊂ W and that

|〈Φ, η〉| = |〈x, ζ〉| ≤ ‖x‖‖ζ‖ ≤ ‖x‖K‖η‖.

Thus, Φ extends by continuity to theW-closure C∗D and then, by the Hahn-
Banach Theorem, to a linear functional v on W (i.e., v ∈ W∗ ⊂ V) without
increase of norm so ‖v‖ ≤ KV‖x‖. Since

〈Cv, ξ〉 = 〈v,C∗ξ〉 = −〈x,E∗ξ〉 = 〈−Ex, ξ〉

for ξ dense in XT ∗, it follows that Ex + Cv = 0 and v ∈ V is a nullcontrol
for x. As x ∈ Xt was arbitrary, we have (2.3) so V ∈ NCt,T as asserted.

3. Time-optimality
We now turn to formulation of the abstract time-optimality problem. It

will be convenient here to abuse notation slightly by thinking of U = U0,T

as the common domain of the control maps Cs,t : U → Xt , omitting explicit
indication of the ΩΩΩ operators; note that we think of Cs,tϕ as depending only
on ‘the part of ϕ between s and t’ — so N (Cs,t) ⊃ N (ΩΩΩ[s,t]) where, in the
obvious notation,

ΩΩΩ[s,t] := ΩΩΩ′s,[0,t]ΩΩΩ
′′
t,[0,T ] = ΩΩΩ′′t,[s,T ]ΩΩΩ

′
s,[0,T ].

Fixing the passive control ϕ∗ ∈ U , a basic assumption is that for each s ∈
(0, T ) we have

ϕ ∈ U ⇒ Psϕ :=
{
ϕ∗ on [0, s)
ϕ on [s, T ]

∈ U(3.1)
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or, more formally, ΩΩΩ′sPsϕ = ΩΩΩ′sϕ and ΩΩΩ′′sPsϕ = ΩΩΩ′′sϕ∗ ; note that Ps will not
generally be linear unless ϕ∗ ≡ 0. We impose the continuity condition that

Cr,tPsϕ→ Cr,tϕ as s↘ r.(3.2)

for 0 ≤ r < t ≤ T — which just says that changing ϕ on the vanishingly
small interval [r, s] has vanishingly small control effect at any t > r.

The data for the time-optimality problem will be

x0 ∈ X0, ϕ∗ ∈ U , A ⊂ U , ST ⊂ XT(3.3)

where x0 is an initial state, ϕ∗ the ‘passive control’, A is a constraint set, and
ST the target set. We will require — to simplify our statement, rather than
as a restriction on A — that ϕ ∈ A implies Psϕ ∈ A for each s. The set of
admissible pairs P = P(A,ST ;x0, ϕ∗) is then defined as

P := {(ϕ, τ) ∈ A× [0, T ] : ϕ = Pτϕ, [E0,Tx0 + C0,Tϕ] ∈ ST}(3.4)

and we say that a control ϕ̄ or, more precisely, an admissible pair (ϕ̄, τ̄) ∈ P
is time-optimal (with respect to this data) if it maximizes τ over (ϕ, τ) ∈ P .

We will say that ϕ ∈ U is ‘slack with respect to (A,V)’ (for a Banach
space V with IV : V → U) if there is some ε > 0 such that

[ϕ+ IVv] ∈ A for all v ∈ V with ‖v‖V < ε.(3.5)

At this point we may state and prove our ‘abstract bang-bang principle’

THEOREM 2: Suppose ϕ ∈ U is slack with respect to (A,V) for
some V ∈ NC r

t,T . Then (ϕ, τ) with τ < t cannot be time-optimal with respect
to any data set (A,ST ;x0, ϕ∗) involving this A.

Proof: Note that, while we have written simply IV : V → U , the condi-
tion that V ∈ NC r

t,T includes the implication that R(IV) is actually in Ut,T so
for s ≤ t one has

Psϕs = ϕs for ϕs := Ps(ϕ+ IVv) (any v ∈ V).(3.6)

Now let Kr be as KV in Theorem 1 applied to this V ∈ NC r
t,T and let ε > 0

be as in (3.5). In view of (3.2) with r = τ < t, we may choose s =: τ̂ close
enough to τ (with τ < τ̂ < t) that

x̃ := Cτ,t [Pτ̂ϕ − ϕ] gives ‖x̃‖ < ε/Kr,(3.7)
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noting that x̃ ∈ R(C0,t) ⊂ Xt. By Theorem 1 we may then choose v ∈ V
such that

Et,T x̃+ Ct,Tv = 0 and ‖v‖V < ε.(3.8)

Now set

ϕ̂ := Pτ̂ (ϕ+ IVv) — i.e., ϕ̂ =


ϕ∗ on [0, τ)
Pτ̂ϕ on [τ, t)
ϕ+ IVv on [t, T ].

(3.9)

Since ‖v‖V < ε, we have [ϕ + IVv] ∈ A by (3.5) so also ϕ̂ ∈ A; we have
Pτ̂ ϕ̂ = ϕ̂ by (3.6). Using (2.2) twice, splitting [0, T ] at τ and at t, we have

C0,Tϕ = Eτ,TC0,τϕ∗ + Cτ,Tϕ

as ϕ = ϕ∗ on [0, τ)

= Eτ,TC0,τϕ∗ + Et,TCτ,tϕ+ Ct,Tϕ

(3.10)

and, similarly, we have

C0,T ϕ̂ = Eτ,TC0,τϕ∗ + Et,TCτ,tPτ̂ϕ+ Ct,T [ϕ+ IVv](3.11)

using (3.9). Comparing (3.11) to (3.10) gives (with CV := Ct,T IV as before)

C0,T ϕ̂−C0,Tϕ = Et,TCτ,t [Pτ̂ϕ− ϕ] + CVv

= Et,T x̃+ CVv = 0
(3.12)

by (3.7) and (3.8).
It follows that (ϕ̂, τ̂) ∈ P = P(A,ST ;x0, ϕ∗) for any data which gives

(ϕ, τ) ∈ P : if E0,Tx0 + C0,Tϕ =: xT ∈ ST , then also E0,Tx0 + C0,T ϕ̂ = xT
for the very same xT ∈ ST . Since τ̂ > τ , it would then be impossible for τ
to be maximal and ϕ could not be a time-optimal control.

To see why we refer to Theorem 2 as an ‘abstract bang-bang principle’, we
note our motivating consequence. Observe, first, that in considering scalar
controls with a uniform pointwise bound as in (1.4), there is some arbi-
trariness about the specification of the control space U . We will, somewhat
arbitrarily, take U := Lp(0, T ) for some finite p > 1 (so, in particular, U is
reflexive) and assume that each of the operators Es,t, Cs,t is continuous for
this choice of U .
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THEOREM 3: Consider a time-optimality problem, as above, with
ST closed and convex in XT , scalar control (say, U = Lp(0, T ) for some p ≥ 1),
and A of the form:

A := {ϕ ∈ U : ϕ(t) ∈ A(t) ae on [0, T ]}(3.13)

with A(·) as in (1.4) and ϕ∗ ∈ A. Assume

For each t ∈ (0, T ), each set E ⊂ (t, T ) of positive measure,

one has L∞(E) ∈ NC r
t,T .

(3.14)

Then there is a unique time-optimal control ϕ̄ and this necessarily has the
‘bang-bang’ property:

[ϕ(t) = a(t) or ϕ(t) = b(t)] ae on [τ, T ](3.15)

with a, b as in (1.4).

The key to this is that for (3.15) to fail one must have

a(t) + ε ≤ ϕ(t) ≤ b(t)− ε for t ∈ E(3.16)

for some ε > 0 and some set E of positive measure in [τ, T ] — perhaps
restricting to an intersection, we may assume this set E is actually contained
in some [t̄, T ] with t̄ > τ . We do note that the very existence of a time-
optimal control is not immediately clear at this point since we have not even
assumed that A(t) should be a closed set.

Proof: We first consider the situation with A replaced by A∗ where

A∗ := {ϕ ∈ U : ϕ(t) ∈ [a(t), b(t)] =: A∗(t) ae on [0, T ]}.

AsA∗ is bounded, closed, and convex (hence weakly compact in U = Lp(0, T ) ),
the usual argument gives existence of a time-optimal control: Let (ϕν) be
an optimizing sequence so we may assume ϕν ⇀ ϕ̄ with τν ↗ τ ; noting
that C0,Tϕν ⇀ C0,T ϕ̄, we must have E0,Tx0 + C0,T ϕ̄ ∈ ST whence (ϕ̄, τ) is
admissible and so time-optimal.] By (3.14) and Theorem 2, we see that ϕ̄
cannot be slack with respect to (A∗,V) for any V = L∞(E) with E of positive
measure in (t̄, T ), t̄ > τ . On the other hand, we have already noted that a
failure of (3.15) would give (3.16), which would imply such slackness and give
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a contradiction. Hence, ϕ̄ must satisfy (3.15) so, by (1.4), we have ϕ̄ ∈ A
and this pair (ϕ̄, τ) is also admissible for the original problem. Since the
problem using A∗ is a relaxed version of that, (ϕ̄, τ) must be time-optimal
for the original problem.

To see uniqueness, note that if (ϕ̂, τ) were a different time-optimal pair
for the original problem (necessarily with the same τ), then we may set
ϕ̃ := (ϕ̄ + ϕ̂)/2 and note that (ϕ̃, τ) is an admissible pair for the problem
using A∗, since the system is linear and A∗,ST are convex. Whether or not
ϕ̂ satisfies (3.15), it is clear that (3.15) cannot hold for ϕ̃ on the (assumed
nonnull) set where ϕ̂ 6= ϕ̄. As above, we then see that (ϕ̃, τ) cannot be time-
optimal for that problem, contradicting the assumed maximality of τ . Thus,
ϕ̄ is the unique optimal control for the original problem.

For the finite dimensional case (state space IRn) we see that the hypothe-
ses above are easily established for control systems governed by

ẋ = Ax+ ϕb x(0) = x0.(3.17)

COROLLARY 4: The results of Theorem 3 apply to finite dimen-
sional time-optimality problems of the indicated form for (3.17), provided
A(·), b(·) are real-analytic on [0, T ] when this is non-autonomous.

Proof: We need only verify the hypothesis (3.14) and for this it is con-
venient to take Xt := R(C0,t) for t ∈ [0, T ] so, in particular, C = C0,T is
surjective to XT . The choice of control space U is not very significant and
we take, e.g., U := L2(0, T ). One easily verifies that the adjoint map C∗ is
given, for η ∈ X ∗T (⊂ IRn), by C∗ : η 7→ 〈b, y〉 ∈ L2(0, T ) where

−ẏ = A∗y, y(T ) = η.(3.18)

The range R(C∗) = {〈b, y〉} is then finite dimensional — indeed, as C
is surjective, it follows that C∗ is injective and dimR(C∗) = dimX ∗T =
dimXT ≤ n. The analyticity assumptions on A(·), b(·) ensure that y and
〈b, y〉 are real-analytic on [0, T ]. Hence, if 〈b, y〉 = 0 on any set E of
positive measure, one must have 〈b, y〉 ≡ 0 on [0, T ]. Thus, the map

LE : η 7→ 〈b, y〉
∣∣∣
E

: X ∗T → R(C) → Ŵ (where Ŵ consists of the restric-

tions to E of functions in R(C∗)) is injective and so invertible. Since Ŵ
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is finite dimensional, [LE ]
−1 is continuous with Ŵ normed as a subspace of

W := L1(E) (so V := L∞(0, T ) is just W∗) and (2.5) holds, giving (3.14) by
Theorem 1. The conclusion is now immediate from Theorem 3.

This argument seems new, even for the finite dimensional case; we do note
that it does not seem to be usefully related to the usual characterization of
time-optimal controls as in the Pontrjagin Maximum Principle.

4. Boundary control of the heat equation
In this section we return to consideration of (1.1) as an example of the

abstract formulation of Sections 2, 3. Our principal new result is exact
boundary nullcontrollability from measurable sets — more precisely, that
L∞(E) ∈ NCt,T for any set E of positive measure in [t, T ]. This is just (3.14)
— one notes that NCt,T and NC r

t,T are equivalent here — so Theorem 3 then
gives the desired ‘bang-bang’ property for time-optimal boundary control of
(1.1).

We will take Xt = X := L2(0, 1) for each t ∈ [0, T ] and will, e.g., take
U = L2(0, T ), so UI = L2(I) with the obvious interpretations of the ΩΩΩ oper-
ators by restriction. For this autonomous situation one has Er,t = S(t − r)
where S(·) is the semigroup on L2(0, 1) corresponding to (1.1) with homo-
geneous boundary conditions. Then Cs,t is the control effect (so Cs,t : ϕ 7→
u(t, ·) where u satisfies (1.1-i, ii) with u(s, ·) = 0) and it is standard (cf.,
e.g., [10]) that each Cs,t is continuous — indeed, compact — from L2(s, t)
to X = L2(0, 1). [We note in passing that there is a well-known explicit
representation for this control mapping associated with (1.1) — using convo-
lution with a fundamental solution, expressible in terms of a theta function;
cf., e.g., [5] p. 171.] The identities (2.1), (2.2) are clear in this context. For
this U there is no difficulty in defining Ps and the continuity condition (3.2)
here follows a fortiori from the stronger fact that Ps → Pr (strongly on
U = L2(0, T )) as s→ r.

To compute the adjoint maps E∗t̄,T , C
∗
t̄,T we consider u satisfying (1.1) for
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t̄ < t ≤ T with u(t̄, ·) ≡ 0 and y satisfying

−yt = yxx (0 < t < T, 0 < x < 1)

y(T, ·) = η ∈ X ∗T = L2(0, 1)

y(·, 0) ≡ 0 ≡ y(·, 1).

(4.1)

A simple computation involving (1.1) with u(t̄, ·) = 0, (4.1), and an integra-
tion by parts gives the identity∫ 1

0
uy dx

∣∣∣∣
t=T

=
∫ T

t̄
ϕ [yx(·, 0)] dt

and, since u(T, ·) = Ct̄,Tϕ here, this gives

C∗t̄,T : X ∗T → L2(t̄, T ) ⊂ L2(0, T )

: η 7−→ ψ := yx(·, 0)
∣∣∣
[t̄,T ]

.
(4.2)

Even more simply, (4.1) gives

E∗t̄,T : X ∗T → X ∗t̄ = L2(0, 1) : η 7−→ y(t̄, ·).(4.3)

It will be necessary to represent y in terms of the eigenfunctions and eigen-
values

ηk(x) :=
√

2 sin
√
λkx, λk := k2π2(4.4)

so that

η =
∑
k

ckηk gives


y =

∑
k

cke
−λk(T−t)ηk

ψ =
∑
k

[√
2λk ck

]
e−λk(T−t).

(4.5)

Our immediate observation is that

η ∈ D := span {ηk} ⇒ C∗t̄,Tη = ψ ∈M =M(Λ) := span {e−λk(T−t)}

where Λ := {λk : k = 1, 2, . . .} with, looking to a somewhat more general
setting, 0 < λ1 < λ2 < . . . such that Σk1/λk is convergent — as is obviously
the case here.

Our starting point will be an inequality

‖y(0, ·)‖L2(0,1) ≤Mt̄‖yx(·, 0)‖L2(0,t̄)(4.6)
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for solutions of (4.1); it is sufficient to consider this only for η ∈ D. We
recognize this as (2.5) — giving (2.3) by Theorem 1 — corresponding to
having U0,t̄ ∈ NC0,t̄ , replacing T by t̄ here. We will take this nullcontrolla-
bility as ‘well-known’ — but note that essentially this inequality (with time
reversed and an interchange of Dirichlet and Neumann conditions) was the
principal result of [11], with the nullcontrollability form given in [4]). From
(4.6) with time reversed, one sees clearly the interpretation of (2.5) as assert-
ing well-posed observability : predicting the terminal state from (boundary)
observations without knowing the initial state.

Our major new resource is an inequality recently obtained by P. Borwein
and T. Erdélyi; this is Theorem 5.6 of [2], but see also [1], [3].

THEOREM (BE): Assume Σk1/λk <∞, etc. Then, for every q > 0,
s > 0, ρ ∈ (0, 1), there is a constant c = cq(s, ρ,Λ) such that:

For every set S ⊂ [ρ, 1] with meas S ≥ s one has

‖p‖L∞(0,ρ) ≤ c‖p‖Lq(S)(4.7)

for every ‘polynomial’ p ∈M0 =M0(Λ) :=
{

Σkakx
λk
}

.

For our present purposes, we make the substitution x = e−(T−t) and set
ρ = e−(T−t̄) so t ∈ [0, t̄], [t̄, T ], E correspond, respectively, to x ∈ [e−T , ρ] ⊂
[0, ρ], [ρ, 1], S and M corresponds to M0; noting that meas S ≥ ρmeas E
for E ⊂ [t̄, T ], one easily sees that, specializing to q = 1, (4.7) gives just the
inequality we will need:

‖ψ̃‖L2(0,t̄) ≤ c̃‖ψ̃‖L1(E) for ψ̃ ∈M(4.8)

with c̃ =
√
t̄ c1(ρmeas E , ρ,Λ) for any set E of positive measure in [t̄, T ].

At this point we are in a position to state and prove our second princi-
pal result, on exact boundary nullcontrollability of the one-dimensional heat
equation from arbitrary sets of positive measure.

THEOREM 5: Let T > 0 and suppose E ⊂ [0, T ] has positive
measure. Then there is a constant K such that:

For every ω0 ∈ X = L2(0, 1) there is a control ϕ such that
|ϕ(t)| ≤ K‖ω0‖X for t ∈ E , ϕ(t) = 0 for t /∈ E ,
and the solution u of (1.1), using ϕ, has u(T, ·) = 0.

Proof: This follows directly from the results we have already developed.
Choose any t̄ > 0 such that Ê ∩ [t̄, T ] has positive measure; set W := L1(Ê)
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and V := W∗ = L∞(Ê). Consider y(0, ·) = E∗0,Tη and ψ̃ = ψ = C∗0,Tη for

η ∈ D. Then (4.6) and (4.8) with E replaced by Ê give ‖y(0, ·)‖L2(0,1) ≤
Mt̄c̃‖ψ‖L1(Ê) or, equivalently,

‖E∗0,Tη‖X ∗ ≤ KV‖C∗Vη‖W

which we recognize as (2.5). The second part of Theorem 1 then gives
V ∈ NCt̄,T which, since Ê ⊂ E so V ↪→ L∞(E), gives precisely the con-
clusion of the present theorem.

COROLLARY 6: The results of Theorem 3 apply to the time-
optimality problem for (1.1).

Proof: Theorem 5 just gives the hypothesis (3.14) in this context so
Theorem 3 applies.

The argument in Theorem 5 establishing that for each E in [t, T ] of pos-
itive measure one has L∞(E) in NC r and hence that Theorem 3 applies,
shows (cf. Theorem V 1.1 of [7]) that the vector measure

m : B[0, T ]→ XT = L2(0, 1) : E 7→ C0,T (χE)

is a Liapunov measure — i.e., for each Borel set F ⊂ [0, T ] of positive
measure, the set {m(E) : E ⊂ F} is a convex, weakly compact subset of
L2. The control-theoretic implications of this property of m are discussed in
Chapters V and IX of [7].

REMARK 4.1: We remark that the ‘bang-bang’ property for time-
optimal controls is classical for the finite-dimensional case, but has previously
been shown in the context of boundary controls of the heat equation only
with the imposition of a ‘slackness condition’ on the target state: the control
constraint has the form |ϕ| ≤ M where it is to be known that the target
is actually reachable (in some time) subject to |ϕ| ≤ M ′ with the slackness
consisting of asking that M > M ′. Some years ago, when [12] appeared, we
felt that this condition might be an artifact of the proof technique and we
attempted to demonstrate the ‘bang-bang’ property without it, i.e., for arbi-
trary (reachable) targets. We failed at that time: the gap in our argument

14



was the need for an estimate such as (4.7) and it is the recent availability
of the result by P. Borwein and T. Erdélyi [1] which has enabled us now to
return successfully to the problem, at least for 1 space dimension.

It should be noted that a newer proof of the ‘bang-bang’ property
was presented in W. Krabs’ book [8], but this proof also imposes an auxil-
iary condition on the target state ωT . The result, Theorem 2.4.13 of [8], is
formulated in terms of a moment problem, so some translation is necessary
for comparison. Krabs requires that c ∈ W where c = (ck) is the sequence
of Fourier coefficients of the target u∗ and the space W is such that this
requirement is equivalent to asking that u∗ is a limit — in the sense that dif-
ferences are reachable by controls with L∞-norm approaching 0 — of targets
of the special form ũ(ε, ·) for ε > 0 and ũ satisfying the equation ũt = ũxx
with control vanishing on [T − ε, T ]. Certainly the special targets then have
ũ(ε, x) = 0 at x = 0, 1 so this, in particular, will also be true in the limit,
i.e., for the targets to which this Theorem 2.4.13 would apply. Krabs also
provides Theorem 2.4.14, explicitly following ideas of [12], giving the conclu-
sion with essentially the same ‘slackness condition’ mentioned earlier; this
condition certainly implies that |ũ(0)| ≤ M ′ < M . Thus, neither of these
theorems would apply to use as target, e.g., the trivially reachable state ob-
tained by taking ϕ ≡ M on [0, T∗]. In comparison, we emphasize that we
have imposed no requirement on the target to get the ‘bang-bang’ property
for a time-optimal control except as is implicit in the very existence of such
a control.

The paper [12] considers the n-dimensional case (a bounded spatial
region Ω ⊂ IRn with control ϕ on [0, T ]× ∂Ω) subject to a constraint of the
form

|ϕ(t, x)| ≤M ae for 0 ≤ t ≤ T, x ∈ ∂Ω.(4.9)

To use our present approach to prove the strong form of the ‘bang-bang’ prop-
erty — that |ϕ∗| = M ae on [0, T ∗]× ∂Ω — would require an n-dimensional
form of Theorem 5, showing exact nullcontrollability with controls in L∞(E)
where E is now an arbitrary subset of positive measure in [0, T ∗]× ∂Ω. This
seems well out of reach by currently available ideas — indeed, even the null-
controllability from a patch (E = [0, T ∗] × P with P ⊂ ∂Ω open but small)
has only recently been demonstrated ([9], compare [13]). On the other hand,
it seems to be a tractable open problem to show the weaker ‘bang-bang’
property that ‖ϕ∗(t, ·)‖L∞(∂Ω) = M ae on [0, T ∗] by showing nullcontrollabil-
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ity from L∞(E × ∂Ω) with E of positive measure in [0, T ∗] as earlier.
Note that each of the results above obtains the ‘bang-bang’ property

by way of the adjoint characterization: ϕ = {M where vx ≥ M ;−M where
vx ≤ −M} for some solution v of the adjoint problem. A plausible conjec-
ture is that the additional restriction on the target state might be significant
to ensure this characterization (so there might conceivably be examples for
which this characterization fails in the absence of some such slackness condi-
tion; this could be a subject for future investigation), although we have seen
that it is not necessary for the ‘bang-bang’ property itself.

REMARK 4.2: An essentially identical argument works if we replace
the heat equation in (1.1) by

ut = (pux)x − qu(4.10)

and/or replace the Dirichlet boundary conditions there by some alternative
type of boundary control. For this case we let {λk, zk} be the eigenvalues and
eigenfunctions of the Sturm-Liouville operator A : z 7→ −(pz′)′ + qz whose
(homogeneous) boundary conditions are those of the new form of boundary
control.

Similarly, one could consider the problem with scalar control in the
equation itself:

ut = (pux)x − qu+ ϕ(t)b(4.11)

for some specified b(·) ∈ X , using homogeneous boundary condition. In
this connection one might note Henry’s example [6] of a problem with time-
optimal control not of bang–bang form — as in (4.10), but effectively con-
sidering version 1 of the time-optimality problem with time-dependent con-
straints, so it does not correspond to the situation we have analyzed.

REMARK 4.3: We may consider the problem with a non-scalar con-
trol: ϕϕϕ = [ϕ0, ϕ1] so the boundary conditions in (1.1) are replaced by

u(·, 0) = ϕ1 u(·, 1) = ϕ2(4.12)

and in (1.3) we take A(t) = K ⊂ IR2 where K is a closed, bounded, convex
set. Here we may distinguish two forms of the ‘bang-bang’ property:
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weak: ae on [0, T ∗] one has ϕϕϕ(t) ∈ ∂K
strong: ae on [0, T ∗] one has ϕϕϕ(t) an extreme point of K.

The weak form is immediate from the previous arguments: if there were
E ⊂ [0, T ] with positive measure for which ϕϕϕ remained in the interior, then
we could obtain a contradiction as in the proof of Theorem 2, perturbing only
the component ϕ0 as there. For the strong form one needs a modification
of this to avoid the possibility that ϕϕϕ might remain interior to some face
within ∂K so that one must consider perturbations with a linear restriction:
ϕ̃(t) = ϕ̂(t)c for some nonzero c ∈ IR2. What would be needed then is
the appropriate modification of the inequality (4.6), obtainable along similar
lines.

To illustrate the situation, consider first K = [0, 1] × [0, 1] Any case
where ϕϕϕ is weakly optimal but not strongly optimal can be reduced to the
following: for a set E of positive measure in [τ, T ] and some ε > 0, one has
ϕ1(t) ∈ (ε, 1 − ε) with ϕ2(t) ∈ {0, 1} for all t ∈ E . By selecting τ̂ > τ but
close, we can ensure that E ′ = E ∩ [τ, T ] has positive measure and that the
state ω′τ̂ produced at τ̂ by use of the modified controls ϕ′i(t) = {ϕi(t) for
t < τ ; = 0 for t ∈ [τ, τ̂ ] differs from the state ωτ̂ produced by the original
ϕϕϕ = (ϕ1, ϕ2) by less than ε/Kr, i.e., ‖ω′τ̂ − ωτ̂‖ < ε/Kr. Consequently, by
modifying ϕ′1 by v supported on E ′ and of supnorm< ε, we obtain — as in
the proof of Theorem 2 — that (ϕ′1 + v, ϕ′2) attains the same target ωT as
ϕϕϕ yet with τ replaced by the larger τ̂ , contradicting the assumed optimality
of τ . On the other hand, if we take K = {(x, y) : x, y ≥ 0, x + y ≤ 1}, it
is clear that such an argument is only available if one knows that pairs with
ϕ1 + ϕ2 = 0 on E are available as nullcontrols for the state perturbation.
Such ‘odd’ control pairs only produce corresponding odd states and so can
only compensate for odd state perturbations. Hence our argument cannot be
expected to work in this setting, although we cannot on this basis conclude
that the ‘bang-bang’ property fails.

Similar considerations apply if one would generalize (4.11) to

ut = (pux)x − qu+ Σjϕj(t)bj(4.13)

with pointwise constraints imposed on the vector control ϕϕϕ = [ϕ1, . . . , ϕJ ].
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REMARK 4.4: There is little difficulty in generalizing the abstract
Theorem 3 to treat state-dependent constraints. It is convenient to take
a space XX = {x(·)} of ‘controlled trajectories’, where the state trajectory
is defined by x(t) := C0,tϕ for t ∈ [0, T ], ϕ ∈ U ; we assume the topology
imposed on XX is such that the linear map X : ϕ 7→ x(·) : U → XX is
continuous. By a ‘state-dependent constraint’ we mean a set-valued function

(t, x) 7−→ A(t, x) ⊂ IR for t ∈ [0, T ], x ∈ XX(4.14)

so the control restriction (1.3-ii) becomes

ϕ ∈ A := {ϕ ∈ U : ϕ(t) ∈ A(t,Xϕ) ae on [0, T ]}.(4.15)

We continue to take U = Lp(0, T ) and to assume (1.4), now also writing
a(t) = a(t, x), b(t) = b(t, x); we will further assume that one has uniform
bounds: a ≤ a(t, x) ≤ b(t, x) ≤ b for all x ∈ XX . Finally, we need a mild
continuity condition4

ϕn ⇀ ϕ̄(weak convergence in U) with (4.15) for each n

implies: a(t,Xϕ̄) ≤ ϕ̄(t) ≤ b(t,Xϕ̄) ae on [0, T ].
(4.16)

We may then argue much as in the proof of Theorem 3. If ϕn is an optimizing
sequence for the time-optimality problem given by (4.15), we have ϕn ⇀ ϕ̄
— using our assumptions on A(··) and extracting a subsequence if necessary
— so we may set A∗(t) := [a(t,Xϕ̄), b(t,Xϕ̄)] and have ϕ̄(t) ∈ A∗(t) ae on
[0, T ]. As in the proof of Theorem 3, we consider the time-optimality problem
using A∗ for A to obtain a (unique) time-optimal control ϕ̂. As there, ϕ̂ has
the ‘bang-bang’ property and so is also admissible for the original problem
— whence the control times τ are the same and we can conclude that ϕ̂ = ϕ̄
so that this is the unique time-optimal control for the original problem.

Acknowledgements: Mizel wishes to acknowledge partial support of this

4For example, it is not hard to see that (4.16) will hold if one can take XX compact in

C([0, T ]→ X ) and if, with A(t) = A(t, x(t)) so A : [0, T ]×X → 2IR, one has

rn → r̄, zn → z̄, rn ∈ A(t, zn) ⇒ a(t, z̄) ≤ r̄ ≤ b(t, z̄).
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