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1. Introduction
For controllability issues one normally considers a control system on a

time interval [0, T ] and asks whether some particular target state ξd in the
state space X is reachable (from initial state ξ0 = 0) or whether these reach-
able targets form a dense set (so one can come arbitrarily close to an arbi-
trary target state: approximate controllability) or whether the trivial state 0
is reachable from every initial state ξ0 ∈ X (nullcontrollability), etc.

For distributed parameter system theory, the term ‘regional analysis’ has
been used to refer to control problems in which the target of interest is not
fully specified as a state, but refers only to a smaller region Ω̂, a portion
of the spatial domain Ω on which the governing partial differential equation
is considered — i.e., one ‘reaches’ a target ηd if one reaches any state ξ
on Ω whose restriction to Ω̂ is ηd. If, e.g., we would have X = L2(Ω) and
Y = L2(Ω̂) and would denote by γγγ : X → Y the restriction map, then
‘reaching ηd’ means that the terminal state x(T ) satisfies γγγ x(T ) = ηd ∈ Y or,
equivalently, that the system reaches the (closed) set γγγ −1(ηd): the component
of x(T ) on Ω \ Ω̂ is invisible.

Such problems of ‘regional analysis’ have been treated, e.g., in [8] and
[26] for situations where the subregion Ω̂ of interest was interior to Ω. We
note that these questions are particularly natural in a setting such as the
wave equation where a limited propagation speed may make it obviously
impossible (for some T ) to affect all of Ω using a given control mechanism,
and so suggest the plausibility of considering more local targets; our present
concerns do not have the geometric character of that setting and we will,
instead, take the controlled heat equation

ut = ∆u+ Bϕ on Ω (uν
∣∣∣
∂Ω

= 0, u
∣∣∣
t=0

= u0)(1.1)

as our model.
It is also plausible in real problems that the target region of interest

may be a portion of the domain boundary so the target ηd is specified only
on a subset Γ ⊂ ∂Ω, rather than on an actual subregion Ω̂. Technically,
the distinguishing difficulty is that the relevant restriction map γγγ is then a
trace map and cannot be expected to be continuous on X . As a (typical)
motivating example of this nature we note one already adduced in [8]:

Heat a parallelepipedal body Ω so as to reach a prescribed target
temperature distribution on one of its faces Γ.
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This typically takes the form of considering (1.1) with the control ϕ ∈ VV =
L2([0, T ]→ V) to be chosen so that

u(T, ·)
∣∣∣
Γ
≈ ηd = desired target ∈ Y := L2(Γ).(1.2)

The point of this paper is to consider, abstractly and in the context
of (1.1), the relations between controllability questions for ‘partial state’
targets in Y and the corresponding questions for the original system with
target states in X . In the process we review various results already known
for ‘full state controllability’ and we may take the survey of these results as
a secondary point of the paper.

2. Formulation
Consider an autonomous linear control problem governed by the abstract

system
ẋ = Ax+ Bϕ x(0) = ξ(2.1)

with x taking values in the Banach space (state space) X and the control ϕ
taking values in the Banach space V (so, nominally, B : V → X ). Letting S(t)
be the C0 semigroup on X generated by A, we then have for x = x(·; ξ, ϕ)
the ‘mild solution’ representation:

x(t) = S(t)ξ + Ltϕ(2.2)

where we have set

Ltϕ :=
∫ t

0
S(t− s)Bϕ(s) ds(2.3)

for ϕ in the control space VV = VVp := Lp([0, T ]→ V) and t ∈ [0, T ].
To correspond to ‘regional control’, we introduce a closed linear map γγγ :

X ⊃ D(γγγ )→ Y for a suitable Banach space Y , and wish to define L̂ : ϕ 7→ ψ
for ϕ ∈ VV by setting ψ(t) = L̂tϕ := γγγ Ltϕ for t ∈ [0, T ]. We will assume
throughout that the system satisfies the basic hypotheses:

(i) γγγ S(t) : X → Y , γγγ S(t)B : V → Y are continuous for each t > 0,

(ii) ‖γγγ S(t)B‖ ≤ µ(t) with µ(·) ∈ Lq(0, T )

(iii) S(t) : X → X , γγγ S(t) : X → Y have dense range for each t > 0.

(2.4)

where q := p/(p − 1) as usual in (ii) so 1/p + 1/q = 1. Note that (2.4-i)
just asserts that the range of S(t) (and also of S(t)B) lies in D(γγγ ); by the
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semigroup property, if this holds for some t = δ ∈ (0, T ), then it holds for
t > δ with continuity in t for each γγγ S(t)ξ.

LEMMA 1: If ‖γγγ S(·)B‖ ∈ Lq(0, T ) (i.e., (2.4-ii)), then L̂t = γγγ Lt :
VV → Y is continuous for each t in [0, T ] and L̂ is continuous from VV to
C([0, T ]→ Y).

Proof: Apply γγγ to (2.3) to get ψ(t) := γγγ Ltϕ; noting the hypothe-
ses (2.4-i, ii), we have

‖ψ(t)‖ =
∥∥∥∥∫ t

0
γγγ S(t− s)Bϕ(s) ds

∥∥∥∥ ≤ ‖µ‖ ‖ϕ‖,
(using the Lq-norm for µ and the VVp-norm for ϕ) so L̂t is bounded for each

t and L̂ : VV → L∞([0, T ] → Y) is bounded. If ϕ is continuous in t (so
‖ϕ(t+ h)− ϕ(t)‖ ≤ ε if 0 ≤ h ≤ δ(ε) and ‖ϕ(s)‖ ≤M), then

‖ψ(t+ h)− ψ(t)‖ ≤
∥∥∥∥∥
∫ h

0
γγγ S(t+ h− s)Bϕ(s) ds

∥∥∥∥∥
+
∥∥∥∥∫ t

0
γγγ S(t− s)B[ϕ(s+ h)− ϕ(s)] ds

∥∥∥∥
≤
∣∣∣∣∣
∫ h

0
µ(t+ h− s)M ds

∣∣∣∣∣+
∣∣∣∣∫ t

0
µ(t− s)ε ds

∣∣∣∣
≤ [Mh1/p + T 1/pε]‖µ‖

for h ≤ δ(ε) so ψ is then also continuous. Since the continuous functions ϕ
are dense in VV , we actually have L̂ : VV → C([0, T ]→ Y), as desired.

In particular, this shows that R(Lt) ⊂ D(γγγ ). Note that the continuity in t
is needed at t = T for evaluation:

η = η(ϕ) : γγγ x(T ) = γγγ S(T )ξ + L̂Tϕ with L̂T = γγγ LT(2.5)

to define η meaningfully, enabling us to focus attention on the ‘restricted
terminal state’ η = γγγ x(T ) ∈ Y . Our controllability issues then involve the
reachable sets :

KX (ξ;T ) := {x(T ; ξ, ϕ) = S(T )ξ + LTϕ : ϕ ∈ VV} ⊂ X ,
KY(ξ;T ) := {η = γγγ S(T )ξ + L̂Tϕ : ϕ ∈ VV} ⊂ Y ;

(2.6)

or simply KX (T ) — even KX if T is clear — for KX (0, T ); similarly for KY .
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3. Verification of the basic hypotheses
We are concerned to verify the hypotheses (2.4), for some concrete control

situations. To relate this abstract formulation to the heat equation (1.1),
which we are taking as a model system, we begin by noting some key facts
relating to the smoothing properties of (1.1). We will consider only the
Hilbert space setting X := L2(Ω), etc. In the notation of Section 2, the
operator A is the Laplacian ∆,2 specified as a self-adjoint operator on X
with domain D(A) = {u ∈ H2(Ω) : uν = 0}. It is convenient to view the
situation in terms of the spectral expansion of A: letting (eκ,−λκ) be the
eigenpairs so

−∆eκ = λkeκ on Ω; ∂eκ/∂ν = 0 on ∂Ω.(3.1)

Note that λκ > 0 (except that λ0 = 0 for the eigenfunction e0 = const.) with
λκ → ∞ and that we can take {eκ} to be an orthonormal basis of X . The
analytic semigroup S(·) generated by A is then given by

S(t) : u =
∑
κ

ακeκ 7−→ S(t)u =
∑
κ

e−λκtακeκ.(3.2)

It is easy to use this expansion also to define the fractional powers [−A]s/2

with D([−A]s/2) consisting of functions u =
∑
κ ακeκ such that3

‖u‖(s) :=

[∑
κ

max{1, λκ}s|ακ|2
]1/2

<∞.(3.3)

From [12] or [10] we know that this norm is equivalent to the Hs(Ω)-norm
and that D([−A]s/2) = Hs

∗(Ω) where the subscript∗ on Hs indicates the
imposition of suitable boundary conditions — with Hs

∗(Ω) = Hs(Ω) for s <
3/2 in the case of Neumann boundary conditions. It is a simple computation,
maximizing over all λ ≥ 0, to see that

λσe−λt ≤
{

1 if σ ≤ 0 (indeed, if σ ≤ e)
(σ/e)σt−σ if σ ≥ 0

2In the domain specification, uν denotes the (outward) normal derivative ∂u/∂ν at the
boundary ∂Ω. Our considerations, as in (3.4), (3.5) below, can be generalized from A = ∆
to A : u 7→ ∇ · p∇u + qu for suitable coefficient functions p, q and to other homogeneous
boundary conditions. With some minor modifications one may also include more general
first-order terms, so A may no longer be self-adjoint.

3The use of max{1, λκ} rather than |λκ| in (3.3) is simply a ‘correction’ to allow for
λ0 = 0, e.g., as in (3.6) below when k = ` = 0.
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for t > 0 and then (3.2), (3.3) immediately give

‖S(t)u‖(s) ≤Mt−σ‖u‖(r) so ‖S(t)‖Hr
∗(Ω)→Hs

∗(Ω) ≤Mt−σ(3.4)

for 0 ≤ σ := (s− r)/2.
This does not quite complete the story as to smoothing: we must also

note that (3.4) localizes. If Ω̃1, Ω̃2 ⊂ Ω are separated (disjoint closures), then
for u with support in Ω̃1 we may replace (3.4) by

‖S(t)u‖(s),Ω̃2
≤ µ∗(t)‖u‖(r),Ω̃1

(3.5)

where µ∗(·), depending on r, s, Ω̃1, Ω̃2, is smooth and vanishes to high order
as t → 0+; here ‖ · ‖(s),Ω̃ denotes the Hs-norm on Ω̃ (arbitrary s). [In this

setting, we will actually have S(t)u real-analytic on Ω̃2 for t > 0, independent
of the global regularity of u since u is analytic (i.e., 0) on a neighborhood of
any point in Ω̃2.]

For our examples we will focus specifically on A = ∆ with Neumann
boundary conditions for the unit square Ω = Ω∗ := (0, 1) × (0, 1) with
X = L2(Ω∗), etc. For future reference we note that in this setting the
Laplace operator is separable and we have an orthonormal basis of product
eigenfunctions

eκ(x, y) = êk(x)ê`(y) for κ = (k, `)

with êk(x) =
{

1 for k = 0√
2 cos kπx for k = 1, 2, . . .;

λκ = (k2 + `2) π2.

(3.6)

There are three particularly interesting cases for γγγ : we may have Ω̂ an
interior region (open in Ω), we may have Ω̂ = Γ a boundary region (open
in ∂Ω), or, finally, we may have Ω̂ a finite set {pn : n = 1, . . . , N} ⊂ Ω
(‘sentinels’, cf., e.g., [15], [16]). For the first of these cases, we take4 Y =
L2(Ω̂) so the restriction map γγγ : X → Y is bounded. For targets on the
boundary, we are taking Y = L2(Γ) so γγγ is a trace map; it is well-known
(cf., e.g., [1]) that such a (Dirichlet) trace map is continuous from Hs(Ω) to
Y = L2(Γ) for any s > 1/2. For the third case, Y = IRN and γγγ corresponds
to point evaluation; it is well-known (again cf., e.g., [1]) that Hs(Ω) ⊃ C(Ω),
making point evaluation continuous, for any s > dim/2 — i.e., for s > 1

4Somewhat more generally, we might take Y = Hs(Ω̂) for suitable s.
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in our 2-dim examples, but requiring larger s if we were to consider higher-
dimensional examples.

Note that we have just associated a choice (0, 1/2+, 1+) of the parame-
ter s with each of our choices for Ω̂ so as to make γγγ : Hs(Ω) → Y continu-
ous. We will similarly associate a choice of the parameter r with each of our
choices of the ‘control mechanism’ determined by B and V by asking that
B : V → Hr

∗(Ω) should be continuous. We then would have, using (3.4),

‖γγγ S(t)B‖V→Y ≤ ‖γγγ ‖Hs→Y‖S(t)‖Hr→Hs‖B‖V→Hr

≤Mt−(s−r)/2 =: µ(t).
(3.7)

For applicability of Lemma 1, assuming we are taking p = 2 to have a Hilbert
space setting and so also have q = 2, this would mean having s − r < 1 in
each of our examples to satisfy (2.4-ii): µ ∈ L2(0, T ).

EXAMPLE 1: [interior (patch) control] Here Ω̂ is taken to be an
open5 set in Ω with V = L2(Ω̃) and B the usual embedding as ‘extension
by 0’. Then B : V → Hr

∗(Ω) is continuous for r ≤ 0 and we have s − r < 1
when we consider Ω̂ open in Ω (s = 0) or Ω̂ = Γ ⊂ ∂Ω (s = 1

2
+), but not

when we consider sentinels (point evaluations, so s = 1+) unless the set of
sentinels has a neighborhood Ω̃∗ separated from Ω̃ (disjoint closures in Ω) so
we can apply (3.5) instead of (3.4) — or unless we make somewhat different
choices for V , p.

EXAMPLE 2: Next we consider V = `2 and, for a specified sequence
of functions {bj}, set [Bϕ](·) =

∑
j ϕjbj(·). The result depends on having

{bj} ⊂ Hr
∗(Ω) for some r with∥∥∥∥∥∥

∑
j

αjbj

∥∥∥∥∥∥
(r)

≤M‖ααα‖`2 ααα = (αj)(3.8)

and we note that either

(a)
∑
j

‖bj‖2
Hr <∞ or

(b) {bj} a Riesz basis for its range in Hr
∗(Ω), e.g., orthonormal.

5More generally, one might take Ω̂ to be a subset of positive measure in Ω, but nothing
is known at present about controllability for that setting.
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would be sufficient for this.
Our results would be as in Example 1 if r = 0 in (3.8) and for r > 0 we

could even include the case of sentinels. Alternatively, we could allow point
source controls by taking r < −1, which would need applicability of (3.5) —
i.e., separation of the control supports (or, at least, their singular supports)
from the target region Ω̂ — even to consider the case of Ω̂ open in Ω, but we
then get our other cases for γγγ as well.

EXAMPLE 3: [boundary control] This is, of course, a most plau-
sible setting for physical implementation, since it requires access to Ω only
at its boundary. E.g., for Neumann control we would be replacing (1.1) by

ut = ∆u on Ω uν
∣∣∣
∂Ω

= Bϕ, u
∣∣∣
t=0

= u0.(3.9)

To consider this, however, we must modify (2.4) since the definition (2.3) is
then replaced in the ‘mild solution’ representation (2.2) by6

Ltϕ :=
∫ t

0
[−A]S(t− s)GBϕ(s) ds(3.10)

where we have introduced the Green’s operator G associated with A and the
involvement of nonhomogeneous boundary conditions. For (3.9), G : ψ 7→ v
is given by the Laplace equation:

∆v = 0 on Ω vν
∣∣∣
∂Ω

= ψ.

For this setting, — asking, e.g., that the boundary controls are in L2(Γ̃) with
Γ̃ ⊂ ∂Ω — we note that, for any r < 3/2, this map G is continuous to Hr

∗(Ω)
from L2(Γ̃) (or even from Hr′(Γ̃) with r′ = r − 3/2 < 0; cf., e.g., [17])).

The effect of this modification is that the condition (2.4-ii) should be
replaced here by

(ii′) ‖γγγAS(t)B‖V→Y ≤ µ(t) with µ(·) ∈ Lq(0, T )(3.11)

6To see this, let v := GBϕ and note that (u− v)t = Au− vt = A[u− v]− vt so, as in
(2.2), we have

[u− v](t) = S(t)[u− v](0)−
∫ t

0

S(t− s)vt(s) ds

= S(t)u0 − v(t)−
∫ t

0

dS(t− s)
ds

v(s) ds

with S′ = AS so we get a new version of (2.2) with Lt as in (3.10); cf., [25] or [4].
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so (3.7) would be replaced by a bound on ‖γγγAS(t)B‖:

‖γγγAS(t)B‖ ≤Mt−σ =: µ(t) with σ := 1 + (s− r)/2 for r < 3/2,

assuming continuity of B : V → L2(Γ̃) and using (3.4); for p = 2, this
gives (3.11) provided s < 1/2 and we can handle interior targets — but this
just barely fails for regional control with targets at the boundary, which we
have noted requires s > 1/2 and certainly fails for consideration of sentinels.
On the other hand, if Γ̃ has a neighborhood disjoint from the region Ω̂, we
can again apply (3.5) instead of (3.4) to handle the difficulty. We can also
consider control functions as in Example 2, except taking the {bj} now to be
functions on Γ̃ ⊂ ∂Ω so we are considering boundary control. The merging
of these considerations should be clear.

4. Controllability issues
Returning to the abstract system of Section 2, we will refer to controlla-

bility issues for the original system (2.1) with target states in X — or, more
properly, (2.2) for t = T — as ‘O-issues’ and to such issues for the regional
or restricted system with targets in Y as ‘R-issues’ , referring respectively to
the reachable sets of (2.6).

Thus, ‘O-nullcontrollability’ (for time T ) means that: ∀ξ ∈ X one has
0 ∈ KX (ξ;T ) (so there is some ϕ ∈ V such that x(T ; ξ, ϕ) = 0; from (2.2)
this is equivalent to the range inclusion: R(S(T )) ⊂ R(LT )) in X ) while ‘R-
nullcontrollability’ means that ∀ξ ∈ X one has 0 ∈ KY(ξ;T ) or, equivalently
in X , that one has KX (ξ;T )

⋂N 6= ∅ where N is the nullspace N (γγγ ) (equiv-
alent to the range inclusion: R(γγγ S(T )) ⊂ R(L̂T )) in Y). In this case, ‘O-
nullcontrollability’ obviously implies ‘R-nullcontrollability’ since we may use
the same control, noting that x(T ) = 0 certainly implies that η = γγγ x(T ) = 0.
Note that the trace operator γγγ is not injective, so this argument would not
be reversible and we should not expect, in general, the converse of this im-
plication. On the other hand, a ‘unique continuation’ property — essentially
that the (nontrivial) nullspace of γγγ intersects trivially with the O-reachable
set — would provide the injectivity where needed and suffices to give this
converse; note Example 4.

We now mention a ‘strong nullcontrollability’ property: that the con-
trolled trajectory can be made to rest at 0 for an interval (in t). It is clear
that O-nullcontrollability implies strong O-nullcontrollability, since one can
extend the nullcontrol ϕ as 0 beyond t = T . On the other hand, η is only a
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partial state and if the ‘regional nullcontrol’ ϕ gives 0 6= x(T ) ∈ N = N (γγγ )
we would have η = 0, but it is far from clear that there need be any extension
of ϕ which would keep x(·) ∈ N to give y(·) ≡ 0 for the ‘regional trajectory’
y(t) = γγγ x(t) for t > T : without O-nullcontrollability, we cannot expect that
R-nullcontrollability would necessarily imply strong R-nullcontrollability.

We now show that, as is already well-known for O-nullcontrollability,
the R-nullcontrollability property implies existence of a continuous ‘control
operator’ C : X → VV .

THEOREM 2: Suppose, for the system described above, γγγ S, γγγ SB
are continuous as in (2.4-i), L̂ is continuous: VV → C([0, T ] → Y) (i.e., the
conclusion of Lemma 1) and one has R-nullcontrollability (i.e., 0 ∈ KY(ξ;T )
for each ξ ∈ X ). It follows that:

(a) There is a continuous map C : X → VV such that ϕ = Cξ is a (regional)
nullcontrol from the initial state ξ ∈ X , i.e., such that L̂TCξ = −γγγ S(T )ξ; if
VV is a Hilbert space, then C can also be taken as linear.

(b) [We suppose, for simplicity, that X is a Hilbert space with A linear
(corresponding to homogeneous BC) self-adjoint and that VV∗ = Lq(V∗).]
There is some M such that, for all solutions v of vt = Av with ζ := v(0) in
the range of γγγ ∗, the terminal state v(T ) ∈ X is uniquely determinable from
observation of B∗v ∈ VV∗ (without specific knowledge of ζ ∈ R(γγγ ∗) ) with a
Lipschitz estimate

‖v(T )‖ ≤M‖B∗v‖.(4.1)

(c) The reachable set KY(ξ;T ′) is independent of ξ and of T ′ for T ′ ≥ T .

Proof: We begin by letting N be the nullspace of L̂T , necessarily a
closed subspace of VV by Lemma 1, and then letting ṼV be the quotient
space VV/N . Next, note that L̂T induces a linear operator L̃ : ṼV 7−→ Y
with L̃[ϕ] = L̂Tϕ where [ϕ] is the coset of ϕ in ṼV = VV/N (equivalently,
L̂Tϕ = L̃[ϕ] for each ϕ in any coset [ϕ]); one easily sees that L̃ is injective
and, from the definition of the quotient space norm, that ‖L̃‖ = ‖L̂T‖. Then
nullcontrollability means solvability (for each given ξ ∈ X ) of the equation:
η := γγγ S(T )ξ + L̂Tϕ = 0 for ϕ ∈ VV and so solvability of γγγ S(T )ξ + L̃[ϕ] = 0
for [ϕ] ∈ ṼV (taking the coset [ϕ] of any original solution ϕ ∈ VV) — and we
note that this solution [ϕ] is unique by the injectivity of L̃. This defines a
map C̃ : ξ 7→ [ϕ] and one easily verifies that C̃ : X → ṼV is linear. Note that
the graph of the operator C̃ is just the nullspace of the continuous linear
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map
X × ṼV −→ Y : (ξ, [ϕ]) 7−→ γγγ S(T )ξ + L̃[ϕ]

and so is closed in X × ṼV . By the Closed Graph Theorem it then follows
that C̃ is continuous.

When VV is a Hilbert space one can identify ṼV with the orthogonal com-
plement of N , i.e., the subspace N⊥ ⊂ VV ; we are then thinking of C̃ as a
linear operator C : X → VV with range in N⊥. It is interesting to note that
this just corresponds to use of the minimum norm nullcontrol in each case,
selecting from the coset C̃ξ ∈ ṼV the element having minimum VV-norm:

Cξ := argmin {‖ϕ‖ : ϕ ∈ C̃ξ so γγγ S(T )ξ + L̂Tϕ = 0}.(4.2)

For the general case, (4.2) need not be well-defined, will not be linear, and
need not be continuous in ξ. The closest we can come to this seems to be
an appeal to the Michael Selection Theorem [21], which promises existence
of a continuous selection — i.e., a right inverse σσσ : ṼV = VV/N → VV of the
canonical projection: VV → ṼV so σσσ[ϕ] ∈ [ϕ] for each coset [ϕ] ∈ ṼV) — which
is nonlinear, but continuous, of linear growth, and almost norm minimizing.
We then set C := σσσ ◦ C̃ : X → VV and the proof of (a) is complete.

The equivalence of O-nullcontrollability to an estimate of the form (4.1)
is fairly standard: what is new here is the restriction of v(0) to R(γγγ ∗) in the
case of R-nullcontrollability. To see (4.1) — with M = ‖C̃‖ as above — we
note that there is ξ ∈ X ∗ = X such that ‖ξ‖ = 1 and ‖v(0)‖ = 〈v(0), ξ〉
and then that there is some nullcontrol ϕ ∈ VV (so ϕ ∈ C̃ξ) such that ‖ϕ‖
is arbitrarily close to ‖C̃ξ‖ ≤ ‖C̃‖ =: M ; let x(·) be the corresponding
controlled solution and set y(t) := x(T − t), so −ẏ = Ay + Bϕ(T − t) and
y(T ) = x(0) = ξ, γγγ y(0) = 0. Since γγγ x(T ) = 0 and ζ = γγγ ∗η for some η, we
have

〈y, v〉
∣∣∣
t=0

= 〈x(T ), ζ〉 = 〈x(T ), γγγ ∗η〉 = 〈γγγ x(T ), η〉 = 0

whence

‖v(T )‖ = 〈ξ, v(T )〉 = 〈y, v〉
∣∣∣T
0

=
∫ T

0
〈y, v 〉̇̇̇ dt = −

∫ T

0
〈Bϕ(T − t), v(t)〉 dt,

giving (4.1) since ‖ϕ‖ ≤ ‖C̃‖ =: M .
For (c) we follow [24]. Suppose the target ηd is in KY(ξ1;T ), i.e., there is

some ϕ1 ∈ VV such that γγγ S(T )ξ1 + L̂Tϕ1 = ηd. For any other initial state ξ2,

11



setting ϕ2 := ϕ1 + C[ξ2 − ξ1] gives

γγγ S(T )ξ2 + L̂Tϕ2

=
[
γγγ S(T )ξ1 + L̂Tϕ1

]
+ γγγ S(T )[ξ2 − ξ1] + L̂T [ϕ2 − ϕ1]

= ηd + 0 = ηd

so KY(ξ1;T ) ⊂ KY(ξ2;T ). By symmetry we have equality and we may simply
write KY = KY(T ) for the reachable set.

Finally, suppose T ′ > T (so T ′ − T = δ > 0). If we have ηd ∈ KY(T ) =
KY(0;T ) = R(L̂T ), i.e., ηd = L̂Tϕ1 for some ϕ1 ∈ VV , we may let

ϕ2(t) :=
{

0 for 0 ≤ t < δ
ϕ1(t− δ) for δ ≤ t ≤ T ′

and easily see from the definition — L̂t = γγγ Lt with (2.3) — that L̂T ′ϕ2 =
L̂Tϕ1 = ηd. Thus, R(L̂T ) ⊂ R(L̂T ′). Since S(T ′) = S(T )S(δ) we have
R(γγγ S(T ′)) ⊂ R(γγγ S(T )) ⊂ R(L̂T ) and this gives R-nullcontrollability for
time T ′. On the other hand, if ηd ∈ R(L̂T ′) = KY(T ′), then ηd = L̂T ′ϕ2

for some ϕ2 ∈ VV and we can set ξ∗ := x(δ; 0, ϕ2) and ϕ∗(·) := ϕ2(· + δ)
on [0, T ]. One easily sees, using the autonomy of the system, that ηd =
L̂T ′ϕ2 = γγγ S(T )ξ∗ + L̂Tϕ∗ ∈ KY (ξ∗;T ) = KY(T ). We have shown that
KY(T ′) = KY(T ).

It is worth noting that our argument for (b) was essentially an interpretation
of the adjoint C̃∗ so it also provides the converse:

(4.1) implies R-nullcontrollability.

We note here that, much as in our argument for (a) above, there is always
a unique ‘minimum-norm control’ to any reachable target when VV is a Hilbert
space. Indeed, we note for future reference that if

VV = VVp with 1 < p <∞ and V uniformly convex,(4.3)

then VV is uniformly convex and so has the ‘Efimov–Stečkin property’

[ϕj ⇀ ϕ̄ plus ‖ϕj‖ → ‖ϕ̄‖ ] ⇒ ϕj → ϕ̄.(4.4)

Since the coset C̃ξ := {ϕ ∈ VV : γγγ S(T )ξ + L̂Tϕ = 0} is a convex, closed
(hence weakly closed) set, it then necessarily contains a unique element ϕ∗

of minimum norm.
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Similarly to our discussion of nullcontrollability, ‘O-approximate control-
lability’ means that one can reach arbitrarily near to every target state, i.e.,

∀ξd ∈ X ,∀ε > 0 : ∃ϕ ∈ VV 3 ‖ξd − x(T ; ξ, ϕ)‖ ≤ ε,(4.5)

i.e., KX (ξ;T ) is dense in X ; correspondingly, ‘R-approximate controllability’
means that KY(ξ;T ) is dense in Y . These notions are independent of the
initial state ξ since we may compensate for replacement of ξ1 by ξ2 in (4.5) by
considering the target state ξd+S(T )[ξ2−ξ1] instead of ξd. The range densities
(in X for R(S(·)) and in Y for R(γγγ S(·))) assumed in (2.4-iii) are obviously
necessary for these even to be possibilities. Trivially, subject to (2.4), O-
nullcontrollability implies O-approximate controllability, since we already
know that O-nullcontrollability means the dense set R(S(·)) is reachable.
Since in (2.4-iii) we have also assumed that R(γγγ S) is dense in Y , we know
that, similarly, R-nullcontrollability implies R-approximate controllability.
Finally, we note the following.

LEMMA 3: Assume the basic set of hypotheses (2.4). Then O-
approximate controllability for some T ′ implies R-approximate controllabil-
ity for any time T > T ′.

Proof: Taking δ := T − T ′ > 0, by (2.4-iii) we may approximate any
target ηd arbitrarily closely by some η∗ = γγγ S(δ)ξ∗. The O-approximate
controllability means that we may then approximate ξ∗ arbitrarily closely
in X using some control ϕ∗ on [0, T ′]. Setting ϕ(t) := {ϕ∗(t) for 0 ≤ t ≤
T ′; 0 for t > T ′}, we note from (2.2) and the semigroup property that
x(T ; ξ, ϕ) = S(δ)x(T ′; ξ, ϕ∗) so (2.5) with (2.4-i) gives η = γγγ S(δ)x(T ′; ξ, ϕ∗) ≈
γγγ S(δ)ξ∗ ≈ ηd.

5. Some examples
We consider several examples in which, as for Section 3, we are considering

control for the heat equation in the square Ω∗ = (0, 1)× (0, 1) with regional
targets.

For Example 1 (patch control) it has comparatively recently become
known (cf., e.g., [14], [11]) that one always has O-nullcontrollability for (1.1)
in this case. By our earlier discussion, this implies both R-nullcontrollability
and R-approximate controllability for all the cases we are considering here —
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in particular, the cases of open Ω̂ ⊂ Ω and boundary targets on Ω̂ = Γ ⊂ ∂Ω,
provided the control set Ω̃ is separated from Γ (perhaps if we restrict our
attention to a smaller control patch).

The cited results of [14], [11] do not depend for validity on the choice
of Ω = Ω∗, and provide a clever argument7 to show that one also obtains
O-nullcontrollability from a boundary patch Γ̃ as in Example 3 (where, as
noted there, one necessarily assumes separation of Γ̃ from Ω̂).

If, e.g., we were to take Ω̂ = Γ to be a side of ∂Ω∗ and take the heat flux at
the side Γ̃ opposite to Γ as a boundary control, this would somewhat resemble
the inverse heat conduction problem (IHCP; cf., e.g., [5], [9]) in which one is
trying to infer that heat flux (otherwise unknown, so treated as a control)
from observation at the accessible face Γ. The significant distinction is that
for the IHCP the observation is taken over the full time interval t ∈ [0, T ]
and one wishes to determine the input flux uniquely, whereas in our present
problem the observation/specification of the target is to be made only at the
terminal time t = T and we seek only to find some suitable control, without
expectation of uniqueness — unless with the aid of such an auxiliary selection
criterion as minimization of the control norm. Uniqueness for the IHCP is
thus more closely related to the notion of strong nullcontrollability.

EXAMPLE 4: We do note that for boundary control (e.g., with a
set {bj} of boundary control functions comparable to Example 2, so we do
not already know O-nullcontrollability from [14], [11] as above) and regional
control for an open patch Ω̂ ⊂ Ω we have a unique continuation property: the
real analyticity of solutions of the heat equation, mentioned earlier, implies
that a solution which vanishes on Ω̂ then necessarily vanishes on all of Ω
for this setting. Thus, R-nullcontrollability, which means vanishing at t = T
on Ω̂, implies O-nullcontrollability — and so also strong O-nullcontrollability
and strong R-nullcontrollability.

EXAMPLE 5: This is a counterexample for the converse of Lemma 3:
one has R-nullcontrollability here for all T > 0, but does not have O-
approximate controllability at all.

7Given Γ̃ ⊂ ∂Ω∗, adjoin to Ω∗ a small ‘bulge’ attached at Γ̃ to get Ω∗∗ ⊃ Ω∗. Taking an
interior patch Ω̃∗∗ within this extra piece, we know there is a nullcontrol for Ω∗∗ supported
in Ω̃∗∗. The corresponding solution takes some (smooth) data for the flux on Γ̃ and that
may be taken as the Neumann data (boundary nullcontrol!) for the problem on Ω∗.
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Consider (1.1) with V = L2(0, 1) and, for a fixed function b(·), set

[Bϕ](x, y) := b(x)ϕ(y) for (x, y) ∈ Ω∗, ϕ ∈ VV

so we have
ut = ∆u+ b(x)ϕ(t, y) uν = 0 at ∂Ω∗.(5.1)

The particular results to be obtained depend on the choice of b(·) and it is
convenient to relate this to the corresponding 1-dimensional problem with
scalar control:

wt = wxx + b(x)ψ(t) wx = 0 at x = 0, 1.(5.2)

We begin with the observation that we may consider solutions wj of (5.2)
with ψ = ψj for j = 0, . . . and then u satisfies (5.1) with

u(t, x, y) :=
∑
j

e−λjtwj(t, x)ej(y), ϕ(t, y) :=
∑
j

e−λjtψj(t)ej(y).(5.3)

It will also be convenient to introduce the solution z = z(t, x) of

zt = zxx zx
∣∣∣
x=0,1

= 0 z
∣∣∣
t=0

= b,(5.4)

noting that

ŵ(t, x) =
∫ t

0
z(t− s, x)ψ(s) ds(5.5)

is then the solution of (5.2) with 0 initial data.
For targets restricted to Γ = Γx̂ := {(x̂, y) : y ∈ (0, 1)} ⊂ Ω∗, i.e.,

taking γγγ to be the trace to some choice of the segment Γx̂, choosing x̂ ∈ (0, 1),
we note that (5.3) makes η(y) := u(T, x̂, y) vanish just when each ψj controls
so each wj(T, x̂) = 0. Letting ωj be the value at (T, x̂) of the solution
of wt = wxx with initial data wj(0, ·) =

∫
u(0, ·, y)ej(y) dy, we then have

wj(T, x̂) = 0 precisely if ∫ T

0
ζ(s)ψj(s) ds = −ωj(5.6)

where ζ(t) := z(T − t, x̂). Note that the smoothing properties of the homo-
geneous heat equation ensure that |ωj| ≤ K‖wj(0, ·)‖ for some fixed K.

Setting ϕj(t) := e−λjtψj(t), we have ‖ϕ‖2 =
∑
j ‖ϕj‖2. Rewriting (5.6) as∫ T

0

[
ζ(s)eλjs

]
ϕj(s) ds = −ωj,
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we see that we can solve this with minimal ‖ϕj‖, assuming that ζ 6≡ 0 on
(0, T ), by taking

ϕj(s) :=
−ωj
‖ζj‖2

ζj(s)

with ζj(s) := ζ(s)eλjs = eλjsz(T − s, x̂)

so ‖ϕj‖ :=
|ωj|
‖ζj‖

≤ K‖wj(0, ·)‖
[
∫
ζ2(s)e2λjs ds]

1/2
.

(5.7)

It is clear that 0 6= ‖ζj‖ → ∞ as j = 0, 1, . . .→∞ so ‖ϕj‖ ≤M‖wj(0, ·)‖ and
‖ϕ‖ ≤M‖u(0, ·, ·)‖. This shows that (5.1) is R-nullcontrollable (so one has,
a fortiori, R-approximate controllability) for essentially arbitrary choices of
b(·) and x̂ — subject only to the minimal assumption that z(·, x̂) 6≡ 0.

On the other hand, we may observe the obvious fact that one does not
have nullcontrollability or even approximate controllability for (5.1) if one
takes, e.g., b = êκ for any8 fixed κ; in fact, the O-reachable set KX is then
necessarily contained in the subspace

{u(x, y) = êκ(x)g(y) : g ∈ L2(0, 1)} ⊂ X = L2(Ω∗)

— and only such initial states can be controlled to 0. Thus, one does not
have O-approximate controllability at all for such a choice of b.

While the principal point of this Example was to provide a counterex-
ample for the converse of Lemma 3, we include a bit more information as to
when (i.e., with a different choice of b) one does have O-nullcontrollability.
Suppose one has nullcontrollability for the corresponding 1-dimensional equa-
tion (5.2). Given initial data u0 = u0(x, y) for (5.1), consider (5.2) with initial
data ωj = ωj(x) :=

∫
u0(x, y)ej(y) dy and take each ψj to be a corresponding

nullcontrol — with a choice of ψj giving ‖ψj‖ ≤ M‖ωj‖ as is possible by
Theorem 2: say ψj = Cωj with C = C(5.2) and M = ‖C‖. For u0 in L2(Ω∗),

this gives ‖u0‖2 =
∑
j ‖ωj‖2 and, much as earlier, ‖ϕ‖ ≤M‖u0‖ <∞. Thus,

this ϕ is in VV = L2([0, T ] → L2[0, 1]) = L2([0, T ] × [0, 1]), so admissible,
and is obviously a nullcontrol in (5.1) on setting t = T in (5.3). This shows
that nullcontrollability for (5.2) implies nullcontrollability for (5.1) with the
same b(·); the converse here is immediate.

8Here êκ is as given in (3.6) and one asks, of course, that x̂ should not be one of the
zeroes of cosκπx, while noting that in this case z(t, x) = e−λκtêκ(x).
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As in Theorem 2, we note the equivalence of this nullcontrollability for
(5.2) and so for (5.1) to an estimate

∑
j

ω2
j ≤M2

∫ T

0

∑
j

(
βje

λjTωj
)
e−λj(T−t)

2

dt

corresponding to ‖v(0)‖ ≤ M‖〈v, b〉‖ for solutions of −vt = vxx. We remark
without proof that one will have this if and only if none of the expansion
coefficients {βj := 〈b, ej〉 : j = 0, . . .} vanish and, for some ε > 0, one has9

|βj| ≥ εe−λjT .(5.8)

6. Some additional results
We comment next on variational approximation in which we penalize

residual errors, rather than directly fixing the terminal state as an imposed
constraint.

THEOREM 4: Consider a control system as described above for
which VV is as in (4.3) and we have (2.4-i) and the conclusion of Lemma 1
— e.g., (2.4-ii) — or, for Example 3, (3.11). Fixing the initial ξ, write η(ϕ)
as in (2.5). Given a reachable target ηd ∈ Y , we construct an approximating
control sequence {ϕj} either by

J (ϕj, λj) ≤ J (λj) + εj where

J (ϕ, λ) := ‖ϕ‖2 + λ2‖η(ϕ)− ηd‖2 J (λ) := infϕ{J (ϕ, λ}
(6.1)

with λj →∞ and εj → 0 or, alternatively, by

ϕj ∈ S(εj), ‖fj‖ ≤ σ(εj) + εj where

S(ε) := {ϕ ∈ VV : ‖η(ϕ)− ηd‖ ≤ ε} σ(ε) := inf{‖ϕ‖ : ϕ ∈ S(ε)}
(6.2)

with εj → 0.
For either method of approximation, we then have ϕj → ϕ∗ where ϕ∗ is the

9The sufficiency of this condition follows from a variant of the Müntz-Szász Theorem
(cf., e.g., [18], [6], [2]), giving ‖(cj)‖`2 ≤M‖

∑
j cje

−λj ·‖L2[0,T ] since λj ∼ j2. It is amusing
to note, following [7], [23], that for b(x) = δ(x − x̄) (so βj ∼ cos jπx̄) the condition (5.8)
prohibits x̄ which are rational or are too rapidly approximable by rationals — a set of
measure 0, but uncountable in every subinterval.
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(unique) minimum norm control attaining ηd.

This is much more a result about variational approximation than about con-
trol theory and we proceed by way of an abstract lemma.

LEMMA 5: Let VV be a reflexive Banach space and let Γ ⊂ VV × IR+

satisfy

(i) for ε > 0 there exists (ω, r) ∈ Γ with r < ε,

(ii) (ωj, rj) ∈ Γ, ωj ⇀ ω̄, rj → 0 ⇒ (ω̄, 0) ∈ Γ.
(6.3)

(a) There is some ω∗ minimizing ‖ω‖ in S0 := {ω ∈ VV : (ω, 0) ∈ Γ} 6= ∅.
Now, with εj → 0, construct a sequence (ωj, rj) ∈ Γ such that

‖ωj‖ ≤ νj + ε+ j, rj ≤ εj [νj := inf{‖ω‖ : (ω, r) ∈ Γ, r ≤ εj}](6.4)

or, almost equivalently, taking λj →∞, and requiring

F (‖ωj‖, λjrj) ≤ J (λj) + εj

[J (λ) := inf{F (‖ω‖, λr) : (ω, r) ∈ Γ}]
(6.5)

where the function F : IR+ × IR+ → IR+ is lsc, continuous, coercive, and
nondecreasing in each argument with F (·, 0) strictly increasing.

(b) There is then a subsequence with ωj ⇀ ω∗ where ω∗ is as in (a); if (a)
characterizes ω∗ uniquely, this is convergence of the full sequence. Further,
we have ‖ωj‖ → ν∗ := ‖ω∗‖ so, if VV has the Efimov–Stečkin property (4.4),
this is strong convergence: ωj → ω∗.

Proof: By (i) there is a sequence satisfying the hypotheses of (ii), so
S0 is nonempty. Any minimizing sequence for ‖ω‖ over S0, must be bounded
so there is a weakly convergent subsequence ωj → ω∗ and (ii) again applies
to show ω∗ ∈ S0. As the norm is lsc for the weak topology, we have (a).

Using (a) we note that in (6.4) we have each νj ≤ ν∗ and, of course,
{νj} nondecreasing. The sequence {ωj} is thus bounded and contains a
subsequence: ωj ⇀ ω̄ weakly convergent in the reflexive space VV with

‖ω̄‖ ≤ lim inf ‖ωj‖ ≤ lim inf νj ≤ ν∗.

Now (ii) applies to give ω̄ ∈ S0 so we may use ω̄ as ω∗ in (a); with ‖ω̄‖ ≤ ν∗;
necessarily, ‖ω̄‖ ≥ ν∗ so ‖ωj‖ → ‖ω̄‖ = ν∗ and we have (b).
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Alternatively, given (6.5) we note that J (λj) ≤ F (‖ω∗‖, 0) for each j
so {F (‖ωj‖, λjrj)} is bounded. Hence, by coercivity, {ωj} is bounded and
rj → 0. As above, we can extract a subsequence ωj ⇀ ω̄ and (ii) applies to
give ω̄ ∈ S0. We have

F (‖ω̄‖, 0) ≤ F (lim inf ‖ωj‖, 0) ≤ lim inf F (‖ωj‖, 0)

≤ lim inf F (‖ωj‖, λjrj) ≤ lim inf J (λj)

≤ F (‖ω∗‖, 0)

so, as F (·, 0) is strictly increasing, ‖ω̄‖ ≤ ‖ω∗‖ (necessarily ‘=’) and again
we have (b).

Proof (of Theorem 4): We will take Γ := {(ϕ, r) ∈ VV × IR+ : ‖η(ϕ) −
ηd‖ ≤ r} and can then apply Lemma 5, noting that (6.3-i) is just approximate
reachability of the target and that S0 is just the set of exact controls to ηd.
The assumption of (4.3) ensures that VV is reflexive and (4.4) holds; we have
already noted that Lemma 5(a) holds in the present context with uniqueness
of the minimum norm control in cS0, provided that ηd is (exactly) reachable
as assumed here. Later we take F (s, r) := s2 + r2, which certainly satisfies
the conditions imposed with (6.5).

We need only show (6.3-ii). As L̂T is continuous, its graph is closed in
VV × Y (hence, by convexity, still closed using the weak topology of VV for
the product). Given ϕj ⇀ ϕ̄ and L̂Tϕj → [ηd − γγγ S(T )ξ] (since rj → 0),

we then have (ϕ̄, ηd − γγγ S(T )ξ) in the graph so L̂T ϕ̄ = ηd − γγγ S(T )ξ, i.e.,
η(ϕ̄) = ηd and (ϕ̄, 0) ∈ Γ. The hypotheses of Lemma 5 are thus satisfied and
the conclusions of Theorem 4 follow.

Finally, we turn to consideration of R-approximate controllability for cer-
tain quasilinear control systems in which (2.1) is perturbed by a nonlinearity:

ẋ = Ax+ f(x) + Bϕ x(0) = ξ.(6.6)

As an O-issue this has been the subject of a considerable body of activity,
for which we mention, e.g., [22], [13], [27], [28]; we may note that [27] ad-
dresses, in some sense, the R-issue with γγγ a projection to a finite-dimensional
space rather than a trace operator as here. That the relevant results for R-
approximate controllability and for O-approximate controllability are not
immediately comparable will be clear from Example 6, below.
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Much as for (2.2), (2.3), we use the ‘mild solution’ representation

x(t) = S(t)ξ +
∫ t

0
S(t− s)f(x(s)) ds+ Ltϕ,(6.7)

which is here a Volterra integral equation for x(·). Adding to our hypotheses,
for example, that f is Lipschitzian (‖f(x1)−f(x2)‖ ≤ L‖x1−x2‖), the stan-
dard Picard iteration argument shows that (6.7) will have a unique solution
for each ξ ∈ X , ϕ ∈ VV with

ϕ 7→ xf (·; ξ, ϕ) : VV → C([0, T ]→ X ) continuous;(6.8)

it will also be convenient to write F : ϕ 7→ f(x(·)) = f(xf (·; ξ, ϕ)). If we
strengthen (2.4-ii) slightly to ask also that ‖γγγ S(t)‖ ≤ µ(t), then

ϕ 7→ ηf (ϕ) := γγγ xf (T ; ξ, ϕ) : VV → Y continuous

= η0(ϕ) + L̃TF(ϕ) with

L̃t : g 7−→
∫ t

0 γγγ S(t− s)g(s) ds.

(6.9)

[Note that η0, defined for f ≡ 0, is just η(·) as given in (2.5) and that (6.9)
gives L̃T = ηf − η0.]

We are now ready to extend to the context of R-approximate controlla-
bility a result from [22]. The hypotheses on S(·) and γγγ S(·) here can easily
be verified for Examples 1,2,3, above.

THEOREM 6: Assume, in addition to (2.4-ii), that S(τ) is a compact
operator for small τ > 0. Let f be a Lipschitzian nonlinear perturbation,
giving (6.9) for (6.6) and assume f is bounded: ‖f(ξ)‖ ≤ β, uniformly for
ξ ∈ X . Construct an approximating control sequence {ϕj} as in Theorem 4,
either by (6.1) or (6.2) — replacing the use of η(ϕ) there by ηf (ϕ) as in (6.9).

(a) If the linear problem (2.1) is R-approximately controllable, then the
quasilinear control problem (6.6) is also R-approximately controllable.

(b) If the target ηd ∈ Y is reachable, then (for either method of approxi-
mation) one has ϕj → ϕ∗ for a subsequence, where ϕ∗ is a minimum norm
control attaining ηd.

Proof: Suppose we fix (any) ξ ∈ X and ηd ∈ Y . Then, for (a), given
any ε > 0 we must show existence of ϕ̄ ∈ VV giving ‖ηf (ϕ̄)−ηd‖ ≤ ε — which
we write in the equivalent form ‖η0(ϕ̄)− [ηd − γγγ L̃TF(ϕ̄)]‖ ≤ ε.
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Note that F : VV → Gβ = {g : ‖g(s)‖ ≤ β a.e. } and we observe that
R := ηd − L̃TGβ is convex and totally bounded in Y . It is sufficient, for the
latter, to show that, for any ε̂ > 0, R is within ε̂ of some precompact set. To
see this, choose δ > 0 so β

∫ δ
0 µ(τ) dτ < ε̂ and then, for g ∈ Gβ, set

gδ(s) := {g(s) for 0 < s < T − δ; 0 for s > T − δ}

and note that

‖L̃Tg − L̃Tgδ‖ =

∥∥∥∥∥
∫ T

T−δ
γγγ S(T − s)g(s) ds

∥∥∥∥∥ ≤ β
∫ δ

0
µ(τ) dτ < ε̂.

Thus, R is within ε̂ of the set

ηd − γγγ S(δ){
∫ T−δ

0
S(T − δ − s)g(s) ds : g ∈ Gβ},

which is precompact — as S(τ) is compact making γγγ S(δ) a compact operator
for γγγ S(τ − δ) continuous as in (2.4-ii).

Since R is totally bounded and (2.1) is R-approximately controllable (so
η0(·) has dense range) there is a finite set {η̄j = η0(ϕj) : j = 1, . . . , J} in the
range of η0 such that:

∀η ∈ R ∃j 3 ‖η − η̄j‖ < ε.(6.10)

We may then define a ‘partition of unity’ for η ∈ R by

ψj(η) := max{0, ε− ‖η − η̄j‖}, ψ̂j(η) :=
ψj(η)∑
k ψk(η)

and use this to define
Φ(η) :=

∑
j

ψ̂j(η)ϕj.

Since
∑
j ψ̂j ≡ 1 on R with ψ̂j(η) 6= 0 only when ‖η − η0(ϕj)‖ ≤ ε, we have

‖η0(Φ(η))− η‖ ≤ ε (η ∈ R).(6.11)

The map E : η 7→ ϕ = Φ(η) 7→ [ηd − L̃TF(ϕ)] is well-defined for η ∈ R
and, by our hypotheses, continuously maps: R → R. By the Schauder
Theorem, there is then a fixpoint η̄ = E(η̄) ∈ R and we let ϕ̄ := Φ(η̄) so
η̄ = ηd−L̃TF(ϕ̄) = [ηd−ηf (ϕ̄)]+η0(ϕ̄). Then ‖ηf (ϕ̄)−ηd‖ = ‖η0(ϕ̄)− η̄‖ ≤ ε,

21



by (6.11), so ϕ̄ is the desired control of (6.6) to within ε of ηd from ξ. This
completes the proof of (a).

To show (b), we proceed as for Theorem 4: we need only show (6.3-ii) for
Γ := {(ϕ, r) ∈ VV × IR+ : ‖ηf (ϕ) − ηd‖ ≤ r}, to apply Lemma 5. Here, this
amounts to showing that ϕj ⇀ ϕ̄ with ηf (ϕj) → ηd implies that ηf (ϕ̄) = ηd
and we actually show that ηf (·) is continuous from the weak topology of VV .

We note, first, that essentially the same argument used above to show
compactness of R shows precompactness of {xf (t; ξ, ϕ)} for ϕ bounded in VV ,
uniformly for 0 < τ ≤ t ≤ T . Since we also have equicontinuity of such
{xf (·; ξ, ϕ)}, it follows that we can extract a subsequence converging, uni-
formly on each [τ, T ], to some x̄ ∈ C((0, T ]→ X ). This also, of course, gives
pointwise convergence on (0, T ] of F(ϕj) to f(x̄) and using that in (6.7) shows
that x̄ = xf (·; ξ, ϕ̄) by the uniqueness of the solution. Since γγγ is closed so ηf
is well-defined, this gives

ηf (ϕ̄) = γγγ x̄(T ) = γγγ limxf (T ; ) = lim ηf (ϕj)

as desired.

EXAMPLE 6:
A somewhat artificial but easy example, related to Example 5, shows

that in the context of R-approximate controllability one cannot generally
permit perturbations of linear growth as, e.g., in [27], [28]. The assump-
tion in Theorem 6 that f is uniformly bounded seems rather strong, but is
apparently unavoidable without requiring deeper information regarding the
linear control problem (2.1) than may conveniently be available here. For
example, in the context of O-approximate controllability, the other results
of [22] require more detailed knowledge about the growth rate of ‖ϕ‖ needed
to approximate to within ε, the results of Khapalov [13] require knowledge of
the growth rate for nullcontrol as T → 0, and the results of Zuazua [27], [28]
require uniform control results for the family {A←7 [A + a·] : a(·) bounded }
to permit linear growth of f .

For this example we take our original problem to be the 1-dimensional
heat equation (5.2) with vanishing Neumann data and the perturbation to
be f(u) = a(x)u, not just of linear growth, but actually linear.

Note, first, that we can choose a(x) so the operator: u 7→ uxx + au
has an eigenfunction b which is not one of the eigenfunctions ek of u 7→
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uxx: we use this pair a, b to specify the unperturbed control problem (5.2)
and the perturbation f(u) = a(x)u. As will always be possible, we then
fix k, ` so βk, β` 6= 0 and take γk, γ` 6= 0 so βkγk + β`γ` = 0; finally, set
c(x) = γkek(x) + γ`e`(x) and γγγ : u 7→ 〈c, u〉. For any ϕ the perturbed

problem ut = uxx + au + bϕ (say, with initial data u
∣∣∣
t=0

= 0) always has

the form u(t, x) = ω(t)b(x), giving ηf (ϕ) ≡ 0, certainly a complete failure
of R-approximate controllability. On the other hand, for the unperturbed
problem (5.2) with the same b, γγγ , we get

η0(ϕ) = βkγk

∫ T

0
e−k

2π2(T−s)ϕ(s) ds+ β`γ`

∫ T

0
e−`

2π2(T−s)ϕ(s) ds

and it is easy to choose ϕ(·) to give this any arbitrary value η ∈ IR =: Y .
Thus the unperturbed problem is actually R-completely controllable in this
example while the range of the perturbed problem is trivial.
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