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Killer Whale Predation on Sea 
Otters Linking Oceanic and 

Nearshore Ecosystems 
J. A. Estes,* M. T. Tinker, T. M. Williams, D. F. Doak 

After nearly a century of recovery from overhunting, sea otter populations are 
in abrupt decline over large areas of western Alaska. Increased killer whale 
predation is the likely cause of these declines. Elevated sea urchin density and 
the consequent deforestation of kelp beds in the nearshore community dem- 
onstrate that the otter's keystone role has been reduced or eliminated. This 
chain of interactions was probably initiated by anthropogenic changes in the 
offshore oceanic ecosystem. 

Apex predators often initiate forces that cas- 
cade across successively lower trophic levels, 
sometimes reaching the base of the food web 
(1). Plant-herbivore interactions vaiy predict- 
ably with trophic complexity in such systems, 
being weak or strong when the number of 
trophic levels is odd or even, respectively (2). 
Sea otters (Enihycdra littils) and kelp forests 
provide a well-lknown example of this pattern 
(3). After being protected from overhunting, 
recovering otter populations transformned 
nearshore reefs from two- to three-trophic- 
level systems by limiting the distribution and 
abundance of herbivorous sea urchins, there- 
by promoting kelp forest development (4). 

Sea otters abounded across the North Pacif- 
ic rim until unregulated exploitation in the mar- 
itime fur trade reduced the species to near- 
extinction by the early 20th century (5). Popu- 
lation regrowth began when protection was af- 
forded under the Intemational Fur Seal Treaty. 
A geographically discordant recoveiy pattem 
ensued because of the fragmented distribution 
of surviving colonies, the discontinuous nature 
of their habitat, and the otter's limited dispersal 
ability (5, 6). Consequently, by the 1970s otter 
populations had recovered to near maximum 
densities in some areas of their historic range, 
were growing rapidly in others, and remained 
absent from still others (7). The sea otter's 
predatoiy role in kelp forest ecosystems was 
discovered by contrasting ihliabited with unin- 
habited areas (8) and by observing changes 
over time as the uninihabited areas were recol- 
onized and their founding populations grew (4, 
9). In addition to showing the influence of sea 
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otters on North Pacific kelp forests, this ap- 
proach has demonstrated a breadth of indirect 
effects on coastal ecosystems (10). The sea 
otter's reputation as a keystone species (1]) is 
based on these interactions and processes. 

Recently, sea otter populations have de- 
clined precipitously and unexpectedly over 
large areas of westem Alaska. We first detected 
this decline thr ough population surveys at Adak 
Island in the central Aleutian archipelago, 
which indicated that the otter population de- 
creased -25% per year through the 1990s, 
resulting in nearly an order-of-magnitude over- 
all reduction by 1997 (Fig. 1). Additional sur- 
veys of Little Kiska, Amnchitka, and Kagalaska 
Islands all show population declines of similar 
timing and rate to that which occurred at Adak 
(Fig. 1). Aerial surveys of the Aleutian archi- 
pelago conducted by the U.S. Fish and Wildlife 
Service in 1965 and 1992 ftirther indicate that 
these declines are occurring throughout the re- 
gion (12). The concurrent and widespread na- 
tuire of these declines strongly suggests a causal 
link with the oceanic enviroiunent. 

Demographic explanations for the sea ot- 
ter population declines are limited to reduced 
fertility, increased mortality, or redistribu- 
tion. Of these, reduced fertility and redistri- 
bution can be excluded. Studies of radio- 
tagged sea otters at Amlchitka Island in 1992- 
94 and Adak Island in 1995-96 show that 
birth rates of adult females and pup survival 
rates from birth to weaning were similar to 
those of stable populations. Redistribution is 
equally unlikely because the declines were 
synchronous over large areas there have 
been no population buildups on some islands 
to account for the losses on others and ra- 
dio-tagged otters at Amcchitka and Adak is- 
lands provided no indication of redistribution 
during the declines (13). From this we con- 
clude that the sea otter population declines 
were caused by increased mortality. 

Three lines of evidence point to increased 
predation by killer whales (Oiecliis or-ca) as the 
reason for this mortality. First, although killer 
whales and sea otters have been observed in 

close proximity for decades, the first attack on a 
sea otter was seen in 1991. Subsequently, nine 
more attacks have been reported (14). We eval- 
uated the likelihood that this cluster of recent 
observations was due to chance alone by sum- 
ming the number of person-days spent in the 
Aleutian Islands by our research team before 
and after 1990 (3405 person-days before; 4005 
after), estimating the attack rate fiom the post- 
1990 data (0.0015 attacks per day), and then 
calculating the probability of no attacks being 
seen before 1990 if the attack rate remained 
constant over the 27-year period. By modeling 
the expected number of observed attacks as a 
Poisson process, the probability of zero attacks 
being seen before 1990 is 0.006 (15). 

Second, we evaluated the impact of killer 
whales on sea otter populations at Adak Island 
by contrasting otter population trends and sur- 
vival rates between Clam Lagoon, an area 
uniquely inaccessible to killer whales, and ad- 
jacent Kuluk Bay, an open coastal environment 
(Fig. 2). Sea otter numbers were stable from 
1993 thlrough 1997 in Clam Lagoon, whereas in 
Kuluk Bay they declined by 76%. In 1995, we 
marked 17 otters in Clam Lagoon and another 
37 in Kuluk Bay with flipper tags and surgically 
implanted radio transmitters in order to com- 
pare their behavior and demography. There was 
virtually no movement of the marked animals 
between these areas. However, thlrough year 1 
of the study, the disappearance rate of sea otters 
in Kuluk Bay (65%) was greater than five times 
that of Clam Lagoon (12%), a trend that con- 
tinued thlrough year 2. 

Finally, we estimated how many otters must 
have been eaten by killer whales to drive the 
decline rates, and then compared the actual 
number of observed attacks with the expected 
number of observed attacks based on this esti- 
mate. This analysis was done for the area be- 
tween Kiska and Seguaim Islands. Before the 
onset of the decline, an estimated 52,656 otters 
ilinabited this area (16). Life table statistics 
(age-specific birth and death rates) were esti- 
mated from data collected during earlier field 
studies to construLct a Leslie matrix for a sta- 
tionaly population. We then added an age-con- 
stant death rate (1 7) from killer whale predation 
sufficient to reduce the population by 78% over 
6 years the observed rate and magnitude of 
decline at Adak. The simulation was ruLn by 
holding the number of individuals that died 
fiom killer whale predation constant over time, 
which produced a loss estimate of 6788 otters 
per year. The expected number of observed 
attacks produced by this approach is 5.05 for 
this 6-year period (18). This compares favor- 
ably with the 6 attacks that were seen. 

Disease, toxinls, and starvation, which are 
three other causes of elevated mortality in 
wildlife populations, can be dismuissed as 
causes of the population declines. Any one of 
these should have produced substantial nlum- 
bers of beach-cast carcasses, whereas very 
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few were found. Marked increases in sea 
urchin biomass during the population decline 
at Adak (Fig. 1) are firther evidence against 
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Fig. 1. (A) Changes in sea otter abundance over time at several islands in the ALeutian archipelago 
and concurrent changes in (B) sea urchin biomass, (C) grazing intensity, and (D) kelp density 
measured from keLp forests at Adak Island. Error bars in (B) and (C) indicate 1 SE. The proposed 
mechanisms of change are portrayed in the marginal cartoons-the one on the left shows how the 
kelp forest ecosystem was organized before the sea otter's decline and the one on the right shows 
how this ecosystem changed with the addition of killer whales as an apex predator. Heavy arrows 
represent strong trophic interactions; light arrows represent weak interactions. 

starvation, because sea urchins are the prin- 
cipal prey of sea otters in the Aleutian Islands 
(19). Although we looked specifically for 

signs of disease, none were found (20). Ele- 
vated contaminant concentrations have been 
reported in the Aleutian Islands (21), but 
subsequent analyses from 39 sites across the 
Aleutian archipelago have shown that these 
are restricted to a few small areas (22), which 
is inconsistent with the widespread declines 
in otter numbers. 

The collective evidence thus leads us to 
conclude that increased killer whale preda- 
tion has caused the otter declines. Although 
the population size and status of killer whales 
in the Aleutian Islands are unknown, these 
animals are commonly seen. From the ener- 
getic requirements of free-ranging killer 
whales and the caloric value of sea otters, we 
estimate that a single killer whale would con- 
sume 1825 otters per year and thus that the 
otter population decline could have been 
caused by as few as 3.7 whales (23). 

Strikingly rapid changes in the kelp forest 
ecosystem have accompanied the sea otter 
population declines (Fig. 1). In 1987, when 
otters at Adak Island were near equilibrium 
density, the kelp forests were surveyed at 28 
randomly selected sites (4). Otters were still 
numerous at Adak in 1991, when five of these 
sites were randomly chosen for the measure- 
ment of plant tissue loss to herbivory (24). 
Using similar procedures at the same sites in 
1997, we resurveyed the kelp forest and re- 
peated the measurements of plant tissue loss 
to herbivory. Over the 10-year interim, sea 
urchin size and density increased to pro- 
duce an eight-fold increase in biomass, 
while kelp density declined by more than a 
factor of 12 (Fig. 1). The average rate of 
kelp tissue loss to herbivory increased from 
1.1% per day in 1991 to 47.5% per day in 
1997 (Fig.1). Observations made in August 
of 1997 revealed similar changes at Kiska, 
Amchitka, and Kagalaska Islands. 

Killer whales and sea otters have co-inhab- 
ited the west-central Aleutian archipelago for 
much of the past half century, and probably for 
millennia before. Thus, it is necessary to ex- 
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plain why the behavior of killer whales toward 
sea otters has recently changed. The most likely 
explanation is a shift in the prey resource base 
for killer whales. Some killer whale groups or 
individuals feed on marine mammals (25), in- 
cluding Steller sea lions and harbor seals, and 
populations of both these species recently have 
collapsed across the western North Pacific. Sea 
lion populations began to decline in the late 
1970s, and their numbers had reached mini- 
mum levels in the Aleutian islands by the late 
1980s (26), a time that coincides with the onset 
of otter declines. Although the exact cause of 
the pinniped decline is uncertain (27), it prob- 
ably relates to reduced abundance and altered 
species composition of their prey (28). Recent 
population declines of piscivorous marine birds 
are consistent with this explanation (29). Why 
forage fish stocks have shifted is not well un- 
derstood, although the change was likely 
caused by some combination of effects firom the 
region's burgeoning fisheries, increased ocean 
temperature, and depletion of baleen whales 
(30). 

Regardless of the ultimate cause, sea otter 
population declines and the consequent collapse 
of kelp forest ecosystems almost certainly have 
been driven by events in the offshore oceanic 
realm. Our proposed explanation involves a 
chain of ecological interactions, beginning with 
reduced or altered forage fish stocks in the 
oceanic environment, which in turn sent pin- 
niped populations into decline. Pinniped num- 
bers eventually became so reduced that some of 
the killer whales who once fed on them expand- 
ed their diet to include sea otters. This shift in 
killer whale foraging behavior created a linkage 
between oceanic and coastal ecosystems and in 
so doing transformed coastal kelp forests from 
three- to four-trophic-level systems, thereby re- 
leasing sea urchins from the limiting influence 
of sea otter predation. Unregulated urchin pop- 
ulations increased rapidly and overgrazed the 
kelp forests, thus setting into motion a host of 
effects in the coastal ecosystem. 

Parts of this scenario are well documented, 
others are more speculative, and still others 
have yet to be evaluated. Nonetheless, the data 
are sufficient to make several points of broader 
ecological significance. First, our findings af- 
ford evidence of the often underappreciated 
importance that uncommon and transient spe- 
cies can have in controlling community struc- 
ture, demonstrating further that such species 
can link interactions across ecosystems. Al- 
though intersystem linkages are becoming in- 
creasingly well known (31), this example is 
unusual because the linkage is formed through 
the activities of a top-level carnivore. Addition- 
ally, our results are relevant to understanding 
food web dynamics, because they demonstrate 
that adding another apex predator to a system 
under top-down control has predictable effects 
on plant populations at the base of the food 
chain. Finally, results from this long-term study 

have implications for both the approach to and 
scale of other ecological field studies. The 
events reported here could not have been chron- 
icled or even detected in a short-term study, 
were unanticipated, and thus seem poorly suited 
for analysis by a priori hypothesis testing. 
These points emphasize the potential signifi- 
cance of large-scale ecological events and the 
consequent need for large-scale approaches in 
ecological research. 
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Induction of Antigen-Specific 
Cytotoxic T Lymphocytes in 
Humans by a MaLaria DNA 

Vaccine 
Ruobing Wang,* Denise L. Doolan,* Thong P. Le,t 

Richard C. Hedstrom, Kevin M. Coonan, Yupin Charoenvit, 
Trevor R. Jones, Peter Hobart, Michal Margalith, Jennifer Ng, 

Walter R. Weiss, Martha Sedegah, Charles de Taisne, 
Jon A. Norman, Stephen L. Hoffmant 

CD8+ cytotoxic T lymphocytes (CTLs) are critical for protection against intracel- 
lular pathogens but often have been difficult to induce by subunit vaccines in 
animals. DNA vaccines elicit protective CD8+ T cell responses. Malaria-naive vol- 
unteers who were vaccinated with plasmid DNA encoding a malaria protein de- 
veloped antigen-specific, genetically restricted, CD8+ T cell-dependent CTLs. Re- 
sponses were directed against all 10 peptides tested and were restricted by six 
human lymphocyte antigen (HLA) class I alleles. This first demonstration in healthy 
naYve humans of the induction of CD8+ CTLs by DNA vaccines, including CTLs that 
were restricted by multiple HLA alleles in the same individual, provides a foundation 
for further human testing of this potentially revolutionary vaccine technology. 

During 1990-1994, the administration of "na- 
ked" plasmid DNA encoding a specific protein 
antigen was shown to induce expression of the 
protein in mouse myocytes (1), to elicit anti- 
bodies against the protein (2), and to manifest 
protection against influenza (3) and malaria (4) 
that was dependent on CD8+ T cell responses 
against the expressed protein. Hundreds of pub- 
lications have now reported the efficacy of 
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DNA vaccines in small and large animal mod- 
els of infectious diseases, cancer, and autoim- 
mune diseases (5). 

DNA vaccines elicit antibodies and CD4+ T 
cell responses in animals, but their major advan- 
tage at the immunological level has been their 
capacity to induce antigen-specific CD8+ T cell 
responses, including CTLs, which is a major 
mechanism of protection against intracellular 
pathogens. Important to our method of develop- 
ing a malaria vaccine is the induction of CD8+ 
T cell responses against Plasmodiurnmfalciparulm 
-infected hepatocytes (6). The lysis of cells in a 
standard chromium release assay was used as a 
surrogate for antihepatocyte responses, because 
it has been established that CD8+ CTLs, which 
recognize peptide-pulsed target cells, also rec- 
ognize and eliminate parasite-infected hepato- 
cytes (6). On the basis of our work with rodents 
(4, 7) and our work and that of others with 
rhesus monkeys (8, 9), we have developed a 
plan for manufacturing and testing the efficacy 
of a multigene P. falciparuln liver-stage DNA 
vaccine in humans (10). This has been contin- 
gent on establishing that DNA vaccination of 
humans is safe and induces antigen-specific, 
genetically restricted, CD8+ T cell-dependent 
CTLs. Recently, the presence of CTL responses 
in human immunodeficiency virus (HIV)-in- 
fected individuals after vaccination with plas- 

mid DNA encoding the nef; rev, or tat genes or 
the env and rev genes of HIV was reported (11). 
Interpreting these results is difficult because of 
the concurrent HIV infection, which has been 
demonstrated to prime individuals for a CTL 
response that is independent of immunization. 

Accordingly, 20 healthy, malaria-naive 
adults were recruited and randomized into four 
dosage groups of five individuals. Three injec- 
tions of 20, 100, 500, or 2500 pg of plasmid 
DNA encoding the P. falciparulm circumsporo- 
zoite protein (PfCSP) (12) were administered at 
4-week intervals in altemate deltoids (13). The 
details of recruitment, safety, and tolerability 
were reported elsewhere (14). To assess CTL 
responses, we collected peripheral blood mono- 
nuclear cells (PBMCs) from each volunteer be- 
fore vaccination, 2 weeks after the second im- 
munization, and 2 and 6 weeks after the third 
immunization. These cells were either assayed 
while fiesh for recall antigen-specific CTL re- 
sponses (15) or were frozen (16) for subsequent 
study. In parallel, CTL assays were carried out 
with PBMCs from nonimmunized control vol- 
unteers. Cytolytic activity was assessed after 
both primary and secondary in vitro restimula- 
tion against HLA-matched and HLA-mis- 
matched PfCSP-specific and control targets. 
The percent lysis and the percent specific lysis 
were determnined as described (15). The most 
sensitive and specific method (17) for demon- 
strating the presence of CTLs was with effector 
cells that were expanded in vitro by exposure to 
cells infected with canary pox (ALVAC) ex- 
pressing the PfCSP (18) and with target cells 
that were sensitized with PfCSP-deiived syn- 
thetic peptides (19). There was no apparent dif- 
ference between the primaiy and secondary as- 
says (20) or between the fresh and frozen spec- 
imens (21). 

For logistical reasons, fiesh PBMCs were 
studied only before vaccination and after the 
second immunization in the 20- and 100-pg- 
dosage groups but were studied before vaccina- 
tion and after all immunizations in the 500- and 
2500-pg-dosage groups, with the exception of 
one individual (13). For 14 individuals, ade- 
quate amounts of frozen PBMCs were available 
for further analysis. A typical pattem of CTL 
responses is presented in Fig. IA. These re- 
sponses were peptide-specific and genetically 
restricted because there was little or no recog- 
nition of autologous targets that were incubated 
with the control peptide or of HLA class I-mis- 
matched targets that were incubated with the 
specific peptide. This activity was shown to be 
CD8+ T cell-dependent by restimulating 
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