

Smart Home Health Analytics Spring 2017

Machine Learning

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

Machine Learning?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience
 - We don't have a specific algorithm to identify spam emails
- There is no need to "learn" to calculate payroll
 - No need to learn to sort the numbers
- Learning is used when:
 - Human expertise does not exist (navigating on Mars)
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
 - Consider a superstore example: we don't know exactly what people are going to buy
 - If we knew we can write algorithm & code
- Data is cheap and abundant (data warehouses, data marts)
 - knowledge is expensive and scarce
- Example: Customer transactions to consumer behavior:
 - People who buy "pasta" may also buy "pasta sauce"

What is learning?

- A process that explains the data we observe
 - Details of the process underlying the generation of data is unknown
 - Not completely random
- Build a model that is a good and useful approximation to the data
 - detect certain patterns or regularities
 - help us to understand process
 - use those patterns to make predictions

Data Mining

- Application of machine learning methods to large databases is called data mining
- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Spam filters, intrusion detection
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- ...

What is Machine Learning?

- Optimize a performance criterion using example data or past experience
 - It is not just a database problem, it is also a part of artificial intelligence
- A system with ability to learn in changing environment & adapt to such changes
 - Designer does not need to foresee and provide all possible solutions
- Theory of Statistics: Inference from a sample
- Role of Computer Science: Design efficient algorithms to
 - Solve the optimization problem
 - Represent and evaluate the model for inference

Machine Learning Applications

- Learning Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

Learning Associations

Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Classification

Example: Credit scoring

Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

Classification: Applications

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles
- Speech recognition: Temporal dependency
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc
- Knowledge extraction, compression, outlier detection....

Face Recognition

Training examples of a person

Test images

Regression

- Example: Price of a used car
- x : car attributes; y : price
- Collect training data
- ML program fits a function to this data to learn y
- Assume a model $y = g(x \mid \theta)$ g() model, θ parameters
- Regression and classification: Supervised problem?

Regression Applications

- Navigating a car: Angle of the steering
- Kinematics of a robot arm

Response surface design

Supervised Learning

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Unsupervised Learning

- Supervised learning:
 - Learn a mapping from the input to an output
 - Correct values of the output provided by a supervisor
- Unsupervised learning
 - No such supervisor
 - Only have input data, no output
 - Find the regularities in the input
 - Exploit the structure of the input space
 - Certain patterns occur more often than others
 - Density estimation
 - Example: clustering

Unsupervised Learning

- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Reinforcement Learning

- Learning a policy: A sequence of outputs
 - A sequence of good actions to reach the goal
 - An action is good if it is part of a good policy
 - Assess the goodness of policies and learn from past
 - No supervised output but delayed reward
- Game playing
 - Single move by itself is not that important
 - Sequence of right moves that is good
- Robot navigating
 - Partial observability, ...May not know its exact location, but only that there is a wall to its left
 - Multiple agents (team of robots playing soccer)

ML Resources: Datasets

- UCI Repository:
 http://www.ics.uci.edu/~mlearn/MLRepository.html
- UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html
- Weka: http://www.cs.waikato.ac.nz/ml/weka/

ML Resources: Journals

- Journal of Machine Learning Research <u>www.jmlr.org</u>
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association
- **...**

ML Resources: Conferences

- International Conference on Machine Learning (ICML)
- European Conference on Machine Learning (ECML)
- Neural Information Processing Systems (NIPS)
- Uncertainty in Artificial Intelligence (UAI)
- Computational Learning Theory (COLT)
- International Conference on Artificial Neural Networks (ICANN)
- International Conference on AI & Statistics (AISTATS)
- International Conference on Pattern Recognition (ICPR)
- **...**

Questions

