NNNNNNNNNNNNNNNNNNNNNNNNNNNN

[S 709/809:
Computational Methods in IS Research
Fall 2017

Exam Review

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

www.umbc.edu

Exam

m When: Tuesday (11/28) 7:10pm — 9:40pm
Where: In Class

Open book, Open notes
Comprehensive (Algorithms, Queueing Theory)

m Materials for preparation:
O Lecture slides
o Quiz and Homework assignments
o Textbooks

Course Overview

Math review
Algorithm development and analysis
O Running time
Sorting
O Insertion sort, selection sort, merge sort, quick sort
Graph Algorithms
o Topological Sort
o Shortest-Path Algorithms
o Dijkstra’s Algorithm
o Network Flow Problems

Course Overview

m Graph Algorithms
O Minimum Spanning Tree
o Prim’s Algorithm
o Kruskal’s Algorithm
m Queueing Theory
o Little’s Theorem, Erlang Traffic
o M/M/1
m Research papers and Development project

Algorithmic Complexity
and
Graph Theory

Math Review

m Floors, ceilings, exponents and logarithms
o Definitions and manipulations

m Series: Arithmetic and Geometric series
o Definitions and manipulations

m Proof Techniques: Read the definition, components, and
how to use the following
o Proof by induction
o Proof by counterexample
o Proof by contradiction

Math Review

m Floors, ceilings, exponents and logarithms
o Definitions and manipulations

m Series: Arithmetic and Geometric series
o Definitions and manipulations

i' N(N +1)

i=1

N N(N +1)(2N +1)

2.1 = :

Math Review

m Proof Techniques: Read the definition, components,
and how to use the following

o Proof by induction

m Example: Prove » (2j-1)=n* (is a perfect square)
j=1

o Proof by counterexample
o Proof by contradiction

m Recursion
O Read the definition and rules
o Analyze running time of recursive algorithm

Algorithm Analysis

m Asymptotic analysis of an algorithm
m Best-case, worst-case and average-case analysis

m Rate of growth: Definitions and Notation (O, Q, ©, o)
O Proofs for specific examples

Asymptotic Notations

m O() — upper bound

o Definition: T(N) = O(g(N)) if there are positive constants c
and ng such that T(N) < cg(N) when N 2 n,

m () —lower bound

o Definition: T(N) =Q(g(N)) if there are positive constants c
and n, such that T(N) > cg(N) when N > n,

m () —tight bound

o Definition: T(N) = ©®(g(N)) if and only if T(N) = O(g(N)) and
T(N) = CQ(g(N))

m o) — strict upper bound

o Definition: T(N) = o(g(N)) if for all constants ¢ there exists
an n, such that T(N) < cg(N) when N > n,

In this diagram; T(n) = f(n)

Asymptotic Analysis

< c,g(n) _
f(n) f(n)
. T
= <o [= ;’—-f'%(n)
Ny nO : Ng "
f(n) = O(g(n)) f(n) = Q(g(n)) f(n) =6(g(n))

m O-notation gives an upper bound for a function to within a constant
factor

m ()-notation gives an lower bound for a function to within a constant
factor

m (-notation bounds a function to within a constant factor
o The value of f(n) always lies between c, g(n) and c, g(n) inclusive

Maximum Subsequence Sum Problem

Maximum subsequence sum problem

O

o O O O

Given (possibly negative) integers A, A,, ..., A, find the

maximum value (> 0) of:

J

kZ:i:Ak

E.g.<1,-4,4,2,-3,5,8/-2> The maximum sum is 16

Solution # 1:
Solution # 2:
Solution # 3:
Solution # 4:

T(N) = O(N°)

T(N) = O(N?)

Recursive, “divide and conquer”

Online Algorithm

T(N) = O(N logN)

T(N) = O(N)

Sorting

Insertion sort; Worst case: O(N?); Best Case O(N)
Selection sort ; Worst-case: O(N?)

Shell sort; Worst-case: O(N3/2)

Merge sort; Worst-case: O(N log, N)

Quick sort; Worst-case: O(N?)

Insertion Sort

m Algorithm:

o Start with empty list S and unsorted list A of N items
o ForeachitemxinA

m InsertxintoS, in sorted order

m Example:

IeEE - TEEE - EEEE - EEEE
\ Y | _Y_)\ Y | \YAY} \ Y)_Y_/
S A S A S A S A

Selection Sort

m Algorithm:

o Start with empty list S and unsorted list A of N items
o for(i=0;i<N;i++)
m x < item in A with smallest key

m Remove x from A
m Append xtoend of S

ﬁ-@-@-@
\ J J \ \ J \
| | | | |
A S A S A S A
Islslls)

|
S A

S

Merge Sort

Unsorted Al | Unsorted A2

Divide with

O(log n) steps — 1 +[log, N|levels

Dividing is trivial
_J | Merging is non- trivial

Conquer with
O(log n) steps

Sorted S

Quick Sort Algorithm

m quicksort (array: S)
1. Ifsizeof SisOor 1, return

2. Pivot = Pick an elementvin S

3. Partition S —{v} into two disjoint groups
S1={xe (S—{v}) | x<v}
S2={xe (S—{v}) | x>V}

4. Return {quicksort(S1), followed by v, followed by
quicksort(S2)}

Quick Sort

Dividing (“Partitioning”) is
non-trivial
Merging is trivial

For now, let the pivot v be the
first item in the list.

O(N log, N)

Comparison of Sorting Algorithms

Average Best
Case Case

InsertionSort ©(N?) O(N?) ©(N) Fast for
small N
ShellSort O(N3/2) O(N7/6) ? ©(N log N) Increment
sequence?
HeapSort ©O(N log N) O(N log N) ©(N log N) Large
constants
MergeSort ©(N log N) O(N log N) ©(N log N) Requires
memory
QuickSort O(N?) O(N log N) ©(N log N) Small

constants

Graph Algorithms

m Graph Definition

o Directed graph, undirected graph, complete graph
m Graph Algorithms

o Topological sort

o Shortest paths
o Network flow
e

Minimum spanning tree

Topological Sort

m Order the vertices in a directed acyclic graph (DAG),
such that if (u, v) € E, then u appears before v in
the ordering

m Solution #1 is O(|V]?)
m Solution #2 is O(|V| + |E|) (queue implementation)

Indegree Before Dequeue #
Verex 1 2 3 4 5 6 7

v CoOo 00 0 0 0
v; 1Coo o 0 0 0
" 2 11 1 Cood o

W 3 2 1C0) \/o o

Vs 1 1Coo0 oA o o

g 303 3 3 1O

V; 2 2 2 1CoCo o Possible topological orderings:
Enqueve vp vy Vs 4 V3,0 Vg Vi, Vo, Vg, Vg, Vg, Vo, Vg and

Dequeue vy vy V5 vy Y3 V1% V]_; V2’ V51 V41 V7’ V3’ V6'

Shortest Path Problems

= Inputis a weighted graph where each edge (v;, v))
has cost ¢ ; to traverse the edge

m Cost of a path v,v,...v is
o Weighted path cost

m Unweighted shortest path (number of edges on
path): O(|E| + |V])

m Weighted shortest path (weighted path cost)
o Dijkstra’s algorithm : O(|E| log |V|)

Dijkstra’s
Algorithm

Dijkstra’s Adjacency List

v known d, p,
Vi F 0 0
Vy F 00 0
V3 F 00 0
Vg F oo 0
Vs F oo 0
Ve F oo 0
%% F 00 0
v known d, p,
V] 0 0
F 28
V3 7
R
Vs Vg
Ve F 8 V3
V7 F 5 V4

v known d, p, Vv known d, p, v known d, p,
v O o o v (O 0o 0 v % 0 0
vy F 2 RS F @ Vi V) 0 Vi
V3 F 00 0 v3 F 3 Vg V3 F a Vg
V4 F @ vl V4 @ @ Vi V4 @ é Vi
Vs F oo 0 vs F 3 V4 Vs F (3D v
Ve F 00 0 g F S V4 Vg F 9 v
V7 F oe) 0 vy F 5 vy o V7 F 5 Vg
v known d, p, v known d, p,
Vi T 0 0 Vi T 0 0
vy T 2 Vi Vo T 2 Vi
V3 T 3 Vg V3 T 3 V4
V4 T 1 V] V4 T 1 vy
Vs T 3 Vg Vs T 3 V4
Vg F 6 Vy Ve T 6 V7
Vs T 5 V4 V7 T 5 Vq

Network Flow Problems

Given a directed graph G = (V, E) with edge capacities c, ,
Give two vertices s, called the source, and t, called the
sink

Through any edge, (v, w), at most c, ,, units of “flow” may
pass

At any vertex v, that is not either s or t, the total flow
coming in must equal the total flow coming out

Maximum Flow Algorithm

Augmenting
path (s, b, d, t)

Augmenting
path (s, a, c, t)

Augmenting
path (s, a, d, t)

Network graph Flow graph (f =5) Residual graph

Minimum Spanning Tree Problem

m Find a minimum-cost set of edges that connect all
vertices of a graph at lowest total cost

m Solution # 1: Prim’s Algorithm:
o O(]V|?) without heap
o O(|E| log |V]|) using binary heaps
m Solution # 2: Kruskal’s Algorithm: O(|E| log |V|)

Prim’s Algorithm

m Solution #1 (Prim’s Algorithm (1957))
o Start with an empty tree T

o T={x}, where x is an arbitrary node in the input graph
o While T is not a spanning tree

m Find the lowest-weight edge that connects a vertexin Tto a
vertex notinT

m AddthisedgetoT
o T will be a minimum spanning tree

Example

Prim’s Algorithm

Pv

Pv

d,

known

NN AN

ol TR I O

Vi
Va2
V3
Va
Vs
Ve
vy

oI ffooo
ont~ 338

oL R

S N Mot N0~
L -

(oo lelelelelNe)

©c8888388

A T A P Tl T LTI

Vi
v2
V3
Va
Vs
Ve
vy

Pv

d,

known

Pv

known

Pv

known

0

Vi
Va4
Vi
vz
V7
Va4

Vi

oNMN~ O~ T

HFHEHERH

Vi
V2
V3
Va4
Vs
Ve
vy

0]

Vi
Vi
Vi
vy
V7
Vi

o N ~\WO -~ F

HEHH L L H

V2
V3
V4
Vs
Ve
v7

onNN~H~®Nn T

R e

V3
Vg

Vi
V2
Vs
Ve
vy

Kruskal’s algorithm

m Solution #2 (Kruskal’s algorithm (1956))
o Start with T =V (with no edges)

o For each edge in increasing order by weight
m |f adding edge to T does not create a cycle
m ThenaddedgetoT

o T will be a minimum spanning tree

Kruskal’'s Algorithm: Example

Input graph:

Collection of Trees @
|V| single-node Trees

Edge Weight Action

(vq, v4) 1 Accepted

(vg, v7) 1 Accepted

(v, v2) 2 Accepted

(v3, v4) 2 Accepted

(v, v4) 3 Rejected

(vq, v3) 4 Rejected

(v, v7) 4 Accepted Algorithm Terminates \J
(v3, vg) 5 Rejected Now only one Tree

(vs, v7) 6 Accepted Itis a MST

Queueing Theory

Characteristics of Queueing Process

m Arrival patterns of customers
m Service patterns of servers

m Queue disciplines

m System capacity

m Number of service channel

m Number of service stages

Solution

Now, that we know there are 5 calls/hr on average in the
busy-hour-time, we should just put trunk lines. RIGHT?

N

HEEREREEE

J

The number of calls in a hour is a random
variable and follows a Poisson distribution
with expected value of 5 calls/hour

0.15}

o

0.05}

0.00

WRONG!
Calls bunch up!

10F

Solution

Now, that we know there are 5 calls/ hr on average in the
busy-hour-time, we should just put 5 trunk lines. RIGHT?

-_
-_
2 2 el
-_
-_

\- J

The number of calls in a hour is a random
variable and follows a Poisson distribution |
with expected value of 5 calls/ hour et

0.00

Erlang B Table

Ch 196
7 2.40
g 312
9 3.78
10 4 46
11 i B .16
12 a.87
13 G.G(
14 7.35
15 g.110
16 a9.a87
17 NG
18 10.43
79 11.23
20 12.03
21 12.83
22 13.64
23 14.47
24 145.249
25 16.12
26 16.95
27 17.97
28 18.64

Steady-State Probabilities for Finite Capacity Queue
11 Servers, Queue Capacity = 0, Arrival Rate = 5, Service Rate = 1

02 -
0.18 +
0.16
0.14
0.12 +
0.1 +
0.08 -
0.06 -
0.04
0.02
o F

Blocking
rate is 0.01

0 1 2 3 4) 6 7 3 9 10 11

Total Number of Customers in the System (waiting or being

served)
18.38 20,94 48 26,11 a8.39 42 454
1926 21.480 49 27.00 39,32 43.43
2014 22 86 a0 2740 40.24 44 43

To carry 5 Erlangs of traffic (5 calls/ hr with average call duration of 1 hour) with
blocking probability of 0.01 only, 11 trunk lines are needed

Little’s Theorem

Length = Arrival-rate x Wait-time

Little’s law states that time-average of queue length is
equal to the product of the arrival rate and the
customer-average waiting time (response time)

L =E[N]=A.E[T]= AW

JDCSLittle

Little’s Theorem

m Little’s formulas are:

o L=AW

O Ly=AW,
m L, =mean # of customer in the queue
B L= mean # of customer in the system
m A =arrival rate

m E[T]=E[T,] +E[S] =>W =W_+1/p

Summary of general results for G/G/c queues

*p _ A Traffic intensity; offered work load rate to a server
Cu
L=AW Little's formula
L, = AW, Little's formula

W =W, + % Expected - value argument

P, = %y = p Busy probability for an arbitrary server

r= i offered work load rate
U

L=L,+r
P, =1—p G/G/lempty system probability
L=L,+1-po)

M/M/1 queue Steady State Solution

m The full steady state solution for M/M/1 system is the
geometric probability function

b =A-p)p" (p=2<1)
Y7,

m Note the existence of a steady state solution depends on
the condition that p<1

o Equivalently A< u
O Intuitively if 4 > ;4 the mean arrival rate > mean service rate
o Server gets further and further behind; system size increases
without bound over time

m Why there is no steady state solution when 4=y

M/M/1 queue Steady State Solution

m Why there is no steady state solution when 1 = 4
o Infinite build up

o As the queue grows it is more and more difficult for the server
to decrease the queue

O Average service rate is no higher than the average arrival rate

Tentative Exam Structure

m Short Multiple Choice Questions

m 10 multiple choice questions with 2 points each

m Short & Medium Type Questions

m 10 to 12 short questions with 5 points each

m 2 to 3 medium questions with 10 points each

m When: Tuesday (11/28) 7:10 pm —9:10 pm (2 hours)
m Where: In Class

Conclusion

Please take a few minutes to complete the online course
evaluations.

Thank you for taking IS 709/809.

Good Luck!

