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Exam

 When:  Tuesday (11/28)  7:10pm – 9:40pm
 Where: In Class

 Open book, Open notes
 Comprehensive  (Algorithms, Queueing Theory)

 Materials for preparation:
 Lecture slides  
 Quiz and Homework assignments 
 Textbooks 



Course Overview

 Math review

 Algorithm development and analysis

 Running time 

 Sorting 

 Insertion sort, selection sort, merge sort, quick sort

 Graph Algorithms

 Topological Sort

 Shortest-Path Algorithms 

 Dijkstra’s Algorithm

 Network Flow Problems 



Course Overview

 Graph Algorithms

 Minimum Spanning Tree 

 Prim’s Algorithm

 Kruskal’s Algorithm

 Queueing Theory

 Little’s Theorem, Erlang Traffic

 M/M/1

 Research papers and Development project



Algorithmic Complexity 
and 

Graph Theory



Math Review

 Floors, ceilings, exponents and logarithms
 Definitions and manipulations 

 Series: Arithmetic and Geometric series
 Definitions and manipulations

 Proof Techniques: Read the definition, components, and 
how to use the following 
 Proof by induction
 Proof by counterexample
 Proof by contradiction 



Math Review

 Floors, ceilings, exponents and logarithms
 Definitions and manipulations 

 Series: Arithmetic and Geometric series
 Definitions and manipulations
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Math Review

 Proof Techniques: Read the definition, components, 
and how to use the following 
 Proof by induction 

 Example: Prove                            (is a perfect square)

 Proof by counterexample 
 Proof by contradiction 

 Recursion 
 Read the definition and rules 
 Analyze running time of recursive algorithm 
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Algorithm Analysis

 Asymptotic analysis of an algorithm

 Best-case, worst-case and average-case analysis 

 Rate of growth: Definitions and Notation (O, Ω, Θ, o) 
 Proofs for specific examples



Asymptotic Notations

 O() – upper bound
 Definition:  T(N) = O(g(N)) if there are positive constants c 

and n0 such that T(N)  cg(N) when N ≥ n0

 () – lower bound

 Definition:  T(N) = (g(N)) if there are positive constants c 
and n0 such that T(N) ≥ cg(N) when N ≥ n0

 () – tight bound

 Definition:  T(N) = (g(N)) if and only if T(N) = O(g(N)) and 
T(N) = (g(N))

 o() – strict upper bound

 Definition:  T(N) = o(g(N)) if for all constants  c there exists 
an n0 such that T(N) < cg(N) when N > n0



Asymptotic Analysis 

 O-notation gives an upper bound for a function to within a constant 
factor

 -notation gives an lower bound for a function to within a constant 
factor

 -notation bounds a function to within a constant factor

 The value of f(n) always lies between c1 g(n) and c2 g(n) inclusive

In this diagram; T(n) = f(n)



Maximum Subsequence Sum Problem

 Maximum subsequence sum problem
 Given (possibly negative) integers A1, A2, …, AN, find the 

maximum value (≥ 0) of:

 E.g. <1, -4, 4, 2, -3, 5, 8, -2>

 Solution # 1: 

 Solution # 2:  

 Solution # 3:   Recursive, “divide and conquer”

 Solution # 4:   Online Algorithm
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The maximum sum is 16

T(N) = O(N3)

T(N) = O(N2)

T(N) = O(N logN)

T(N) = O(N)



Sorting

 Insertion sort;   Worst case:  O(N2); Best Case O(N)

 Selection sort ;  Worst-case:  O(N2)

 Shell sort;           Worst-case:  O(N3/2)

 Merge sort;        Worst-case:  O(N log2 N)

 Quick sort;          Worst-case:  O(N2)



Insertion Sort

 Algorithm:

 Start with empty list S and unsorted list A of N items

 For each item x in A
 Insert x into S, in sorted order

 Example:

7 3 9 5

AS

7 3 9 5

AS

3 7 9 5

AS

3 7 9 5

AS

3 5 7 9

S A



Selection Sort

 Algorithm:
 Start with empty list S and unsorted list A of N items

 for (i = 0; i < N; i++)
 x  item in A with smallest key

 Remove x from A

 Append x to end of S

7 3 9 5

AS

3 7 9 5

AS

3 5 9 7

AS

3 5 7 9

AS

3 5 7 9

S A



Merge Sort

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

1 + log2 N levels

3 7 5 9 4 8 0 1

3 5 7 9 0 1 4 8

0 1 3 4 5 7 8 9

Sorted S1 Sorted S2

Unsorted A1 Unsorted A2 

Sorted S 

Divide with 

O(log n) steps

Conquer with

O(log n) steps

Dividing is trivial

Merging is non- trivial



Quick Sort Algorithm

 quicksort (array:  S)
1. If size of S is 0 or 1, return

2. Pivot = Pick an element v in S

3. Partition S – {v} into two disjoint groups
S1 = {x  (S – {v}) | x < v}
S2 = {x  (S – {v}) | x > v}

4. Return {quicksort(S1), followed by v, followed by 
quicksort(S2)}



Quick Sort

4 7 1 5 9 3 0
For now, let the pivot v be the

first item in the list.

1 3 0 7 5 94S1 S2

v

0 1 3S1 S2

v

5 7 9S1 S2

v

0 1 3 4

v

5 7 9S1 S2

0 1 3 4 5 7 9

O(N log2 N)

Dividing (“Partitioning”) is 

non-trivial

Merging is trivial



Comparison of Sorting Algorithms



Graph Algorithms

 Graph Definition

 Directed graph, undirected graph, complete graph

 Graph Algorithms

 Topological sort

 Shortest paths

 Network flow

 Minimum spanning tree



Topological Sort

 Order the vertices in a directed acyclic graph (DAG), 
such that if (u, v)  E, then u appears before v in 
the ordering

 Solution #1 is O(|V|2)

 Solution #2 is O(|V| + |E|) (queue implementation)

Possible topological orderings:  

v1, v2, v5, v4, v3, v7, v6 and 

v1, v2, v5, v4, v7, v3, v6.



Shortest Path Problems

 Input is a weighted graph where each edge (vi, vj) 
has cost ci, j to traverse the edge

 Cost of a path v1v2…vN is

 Weighted path cost

 Unweighted shortest path  (number of edges on 
path): O(|E| + |V|)

 Weighted shortest path (weighted path cost)

 Dijkstra’s algorithm :  O(|E| log |V|)



Dijkstra’s

Algorithm



Dijkstra’s Adjacency List



Network Flow Problems
 Given a directed graph G = (V, E) with edge capacities cv, w

 Give two vertices s, called the source, and t, called the 
sink

 Through any edge, (v, w), at most cv, w units of “flow” may 
pass

 At any vertex v, that is not either s or t, the total flow 
coming in must equal the total flow coming out



Maximum Flow Algorithm

Network graph Flow graph (f = 5) Residual graph

Augmenting

path (s, a, c, t)

Augmenting

path (s, a, d, t)

Augmenting

path (s, b, d, t)



Minimum Spanning Tree Problem

 Find a minimum-cost set of edges that connect all 
vertices of a graph at lowest total cost

 Solution # 1: Prim’s Algorithm:

 O(|V|2) without heap

 O(|E| log |V|) using binary heaps

 Solution # 2: Kruskal’s Algorithm: O(|E| log |V|)



Prim’s Algorithm

 Solution #1 (Prim’s Algorithm (1957))

 Start with an empty tree T

 T = {x}, where x is an arbitrary node in the input graph

 While T is not a spanning tree
 Find the lowest-weight edge that connects a vertex in T to a 

vertex not in T

 Add this edge to T

 T will be a minimum spanning tree



Prim’s Algorithm:  Example



Kruskal’s algorithm

 Solution #2 (Kruskal’s algorithm (1956))

 Start with T = V (with no edges)

 For each edge in increasing order by weight
 If adding edge to T does not create a cycle

 Then add edge to T

 T will be a minimum spanning tree



Kruskal’s Algorithm:  Example

Input graph:
1st

1st

2nd

2nd
3rd4th

4th5th 6th

Collection of Trees

|V| single-node Trees

Algorithm Terminates

Now only one Tree

It is a MST



Queueing Theory



Characteristics of Queueing Process

 Arrival patterns of customers

 Service patterns of servers

 Queue disciplines

 System capacity

 Number of service channel

 Number of service stages



Now, that we know there are 5 calls/hr on average in the 

busy-hour-time, we should just put 5 trunk lines. RIGHT?

WRONG!

Calls bunch up!

The number of calls in a hour is a random 

variable and follows a Poisson distribution 

with expected value of 5 calls/hour

Solution



Now, that we know there are 5 calls/ hr on average in the 

busy-hour-time, we should just put 5 trunk lines. RIGHT?

The number of calls in a hour is a random 

variable and follows a Poisson distribution 

with expected value of 5 calls/ hour

WRONG!

Calls bunch up!

Solution



Blocking 

rate is 0.01

11

To carry 5 Erlangs of traffic (5 calls/ hr with average call duration of 1 hour) with 

blocking probability of 0.01 only, 11 trunk lines are needed



Little’s law states that time-average of queue length is 
equal to the product of the arrival rate and the 

customer-average waiting time (response time)

WTENEL .][.][  

Length = Arrival-rate x Wait-time

JDC Little

Little’s Theorem

E[T]



Little’s Theorem

 Little’s formulas are:

 L = λW

 Lq = λWq

 Lq = mean # of customer in the queue

 L =  mean # of customer in the system

 λ = arrival rate

 E[T] = E[Tq] + E[S] => W = Wq + 1/μ



Summary of general results for G/G/c queues
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M/M/1 queue Steady State Solution

 The full steady state solution for M/M/1  system is the 
geometric probability function

 Note the existence of a steady state solution depends on 
the condition that 

 Equivalently  

 Intuitively if                the mean arrival rate > mean service rate

 Server gets further and further behind; system size increases 
without bound over time

 Why there is no steady state solution when 
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M/M/1 queue Steady State Solution

 Why there is no steady state solution when

 Infinite build up 

 As the queue grows it is more and more difficult for the server 
to decrease the queue

 Average service rate is no higher than the average arrival rate

 



Tentative Exam Structure

 Short Multiple Choice Questions     

 10 multiple choice questions with 2 points each

 Short & Medium Type Questions               

 10 to 12 short questions with 5 points each 

 2 to 3 medium questions with 10 points each

 When:  Tuesday (11/28)  7:10 pm – 9:10 pm (2 hours)
 Where: In Class



Please take a few minutes to complete the online course 
evaluations. 

Thank you for taking IS 709/809.

Conclusion


