
IS 709/809:
Computational Methods in IS Research

Fall 2017

Exam Review

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Exam

 When: Tuesday (11/28) 7:10pm – 9:40pm
 Where: In Class

 Open book, Open notes
 Comprehensive (Algorithms, Queueing Theory)

 Materials for preparation:
 Lecture slides
 Quiz and Homework assignments
 Textbooks

Course Overview

 Math review

 Algorithm development and analysis

 Running time

 Sorting

 Insertion sort, selection sort, merge sort, quick sort

 Graph Algorithms

 Topological Sort

 Shortest-Path Algorithms

 Dijkstra’s Algorithm

 Network Flow Problems

Course Overview

 Graph Algorithms

 Minimum Spanning Tree

 Prim’s Algorithm

 Kruskal’s Algorithm

 Queueing Theory

 Little’s Theorem, Erlang Traffic

 M/M/1

 Research papers and Development project

Algorithmic Complexity
and

Graph Theory

Math Review

 Floors, ceilings, exponents and logarithms
 Definitions and manipulations

 Series: Arithmetic and Geometric series
 Definitions and manipulations

 Proof Techniques: Read the definition, components, and
how to use the following
 Proof by induction
 Proof by counterexample
 Proof by contradiction

Math Review

 Floors, ceilings, exponents and logarithms
 Definitions and manipulations

 Series: Arithmetic and Geometric series
 Definitions and manipulations

2

)1(

1






NN
i

N

i

6

)12)(1(

1

2 




NNN
i

N

i

Math Review

 Proof Techniques: Read the definition, components,
and how to use the following
 Proof by induction

 Example: Prove (is a perfect square)

 Proof by counterexample
 Proof by contradiction

 Recursion
 Read the definition and rules
 Analyze running time of recursive algorithm





n

j

nj
1

2)12(

Algorithm Analysis

 Asymptotic analysis of an algorithm

 Best-case, worst-case and average-case analysis

 Rate of growth: Definitions and Notation (O, Ω, Θ, o)
 Proofs for specific examples

Asymptotic Notations

 O() – upper bound
 Definition: T(N) = O(g(N)) if there are positive constants c

and n0 such that T(N)  cg(N) when N ≥ n0

 () – lower bound

 Definition: T(N) = (g(N)) if there are positive constants c
and n0 such that T(N) ≥ cg(N) when N ≥ n0

 () – tight bound

 Definition: T(N) = (g(N)) if and only if T(N) = O(g(N)) and
T(N) = (g(N))

 o() – strict upper bound

 Definition: T(N) = o(g(N)) if for all constants c there exists
an n0 such that T(N) < cg(N) when N > n0

Asymptotic Analysis

 O-notation gives an upper bound for a function to within a constant
factor

 -notation gives an lower bound for a function to within a constant
factor

 -notation bounds a function to within a constant factor

 The value of f(n) always lies between c1 g(n) and c2 g(n) inclusive

In this diagram; T(n) = f(n)

Maximum Subsequence Sum Problem

 Maximum subsequence sum problem
 Given (possibly negative) integers A1, A2, …, AN, find the

maximum value (≥ 0) of:

 E.g. <1, -4, 4, 2, -3, 5, 8, -2>

 Solution # 1:

 Solution # 2:

 Solution # 3: Recursive, “divide and conquer”

 Solution # 4: Online Algorithm




j

ik

kA

The maximum sum is 16

T(N) = O(N3)

T(N) = O(N2)

T(N) = O(N logN)

T(N) = O(N)

Sorting

 Insertion sort; Worst case: O(N2); Best Case O(N)

 Selection sort ; Worst-case: O(N2)

 Shell sort; Worst-case: O(N3/2)

 Merge sort; Worst-case: O(N log2 N)

 Quick sort; Worst-case: O(N2)

Insertion Sort

 Algorithm:

 Start with empty list S and unsorted list A of N items

 For each item x in A
 Insert x into S, in sorted order

 Example:

7 3 9 5

AS

7 3 9 5

AS

3 7 9 5

AS

3 7 9 5

AS

3 5 7 9

S A

Selection Sort

 Algorithm:
 Start with empty list S and unsorted list A of N items

 for (i = 0; i < N; i++)
 x  item in A with smallest key

 Remove x from A

 Append x to end of S

7 3 9 5

AS

3 7 9 5

AS

3 5 9 7

AS

3 5 7 9

AS

3 5 7 9

S A

Merge Sort

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

7 3 9 5 4 8 0 1

1 + log2 N levels

3 7 5 9 4 8 0 1

3 5 7 9 0 1 4 8

0 1 3 4 5 7 8 9

Sorted S1 Sorted S2

Unsorted A1 Unsorted A2

Sorted S

Divide with

O(log n) steps

Conquer with

O(log n) steps

Dividing is trivial

Merging is non- trivial

Quick Sort Algorithm

 quicksort (array: S)
1. If size of S is 0 or 1, return

2. Pivot = Pick an element v in S

3. Partition S – {v} into two disjoint groups
S1 = {x  (S – {v}) | x < v}
S2 = {x  (S – {v}) | x > v}

4. Return {quicksort(S1), followed by v, followed by
quicksort(S2)}

Quick Sort

4 7 1 5 9 3 0
For now, let the pivot v be the

first item in the list.

1 3 0 7 5 94S1 S2

v

0 1 3S1 S2

v

5 7 9S1 S2

v

0 1 3 4

v

5 7 9S1 S2

0 1 3 4 5 7 9

O(N log2 N)

Dividing (“Partitioning”) is

non-trivial

Merging is trivial

Comparison of Sorting Algorithms

Graph Algorithms

 Graph Definition

 Directed graph, undirected graph, complete graph

 Graph Algorithms

 Topological sort

 Shortest paths

 Network flow

 Minimum spanning tree

Topological Sort

 Order the vertices in a directed acyclic graph (DAG),
such that if (u, v)  E, then u appears before v in
the ordering

 Solution #1 is O(|V|2)

 Solution #2 is O(|V| + |E|) (queue implementation)

Possible topological orderings:

v1, v2, v5, v4, v3, v7, v6 and

v1, v2, v5, v4, v7, v3, v6.

Shortest Path Problems

 Input is a weighted graph where each edge (vi, vj)
has cost ci, j to traverse the edge

 Cost of a path v1v2…vN is

 Weighted path cost

 Unweighted shortest path (number of edges on
path): O(|E| + |V|)

 Weighted shortest path (weighted path cost)

 Dijkstra’s algorithm : O(|E| log |V|)

Dijkstra’s

Algorithm

Dijkstra’s Adjacency List

Network Flow Problems
 Given a directed graph G = (V, E) with edge capacities cv, w

 Give two vertices s, called the source, and t, called the
sink

 Through any edge, (v, w), at most cv, w units of “flow” may
pass

 At any vertex v, that is not either s or t, the total flow
coming in must equal the total flow coming out

Maximum Flow Algorithm

Network graph Flow graph (f = 5) Residual graph

Augmenting

path (s, a, c, t)

Augmenting

path (s, a, d, t)

Augmenting

path (s, b, d, t)

Minimum Spanning Tree Problem

 Find a minimum-cost set of edges that connect all
vertices of a graph at lowest total cost

 Solution # 1: Prim’s Algorithm:

 O(|V|2) without heap

 O(|E| log |V|) using binary heaps

 Solution # 2: Kruskal’s Algorithm: O(|E| log |V|)

Prim’s Algorithm

 Solution #1 (Prim’s Algorithm (1957))

 Start with an empty tree T

 T = {x}, where x is an arbitrary node in the input graph

 While T is not a spanning tree
 Find the lowest-weight edge that connects a vertex in T to a

vertex not in T

 Add this edge to T

 T will be a minimum spanning tree

Prim’s Algorithm: Example

Kruskal’s algorithm

 Solution #2 (Kruskal’s algorithm (1956))

 Start with T = V (with no edges)

 For each edge in increasing order by weight
 If adding edge to T does not create a cycle

 Then add edge to T

 T will be a minimum spanning tree

Kruskal’s Algorithm: Example

Input graph:
1st

1st

2nd

2nd
3rd4th

4th5th 6th

Collection of Trees

|V| single-node Trees

Algorithm Terminates

Now only one Tree

It is a MST

Queueing Theory

Characteristics of Queueing Process

 Arrival patterns of customers

 Service patterns of servers

 Queue disciplines

 System capacity

 Number of service channel

 Number of service stages

Now, that we know there are 5 calls/hr on average in the

busy-hour-time, we should just put 5 trunk lines. RIGHT?

WRONG!

Calls bunch up!

The number of calls in a hour is a random

variable and follows a Poisson distribution

with expected value of 5 calls/hour

Solution

Now, that we know there are 5 calls/ hr on average in the

busy-hour-time, we should just put 5 trunk lines. RIGHT?

The number of calls in a hour is a random

variable and follows a Poisson distribution

with expected value of 5 calls/ hour

WRONG!

Calls bunch up!

Solution

Blocking

rate is 0.01

11

To carry 5 Erlangs of traffic (5 calls/ hr with average call duration of 1 hour) with

blocking probability of 0.01 only, 11 trunk lines are needed

Little’s law states that time-average of queue length is
equal to the product of the arrival rate and the

customer-average waiting time (response time)

WTENEL .][.][ 

Length = Arrival-rate x Wait-time

JDC Little

Little’s Theorem

E[T]

Little’s Theorem

 Little’s formulas are:

 L = λW

 Lq = λWq

 Lq = mean # of customer in the queue

 L = mean # of customer in the system

 λ = arrival rate

 E[T] = E[Tq] + E[S] => W = Wq + 1/μ

Summary of general results for G/G/c queues

)1(LL

yprobabilit systemempty G/G/1 1

LL

rate load work offered r

serverarbitrary an for y probabilitBusy p

argument value-Expected 1WW

formula sLittle' L

formula sLittle'W L

server a torate load work offered intensity; Traffic

0q

0

q

b

q

q

p

p

r

c

W

c

q









































M/M/1 queue Steady State Solution

 The full steady state solution for M/M/1 system is the
geometric probability function

 Note the existence of a steady state solution depends on
the condition that

 Equivalently

 Intuitively if the mean arrival rate > mean service rate

 Server gets further and further behind; system size increases
without bound over time

 Why there is no steady state solution when

1)()1(



 n

np

1

 

 

 

M/M/1 queue Steady State Solution

 Why there is no steady state solution when

 Infinite build up

 As the queue grows it is more and more difficult for the server
to decrease the queue

 Average service rate is no higher than the average arrival rate

 

Tentative Exam Structure

 Short Multiple Choice Questions

 10 multiple choice questions with 2 points each

 Short & Medium Type Questions

 10 to 12 short questions with 5 points each

 2 to 3 medium questions with 10 points each

 When: Tuesday (11/28) 7:10 pm – 9:10 pm (2 hours)
 Where: In Class

Please take a few minutes to complete the online course
evaluations.

Thank you for taking IS 709/809.

Conclusion

