

IS 709/809: Computational Methods in IS Research Fall 2017

Exam Review

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

Exam

- When: Tuesday (11/28) 7:10pm 9:40pm
- Where: In Class
- Open book, Open notes
- Comprehensive (Algorithms, Queueing Theory)
- Materials for preparation:
 - Lecture slides
 - Quiz and Homework assignments
 - Textbooks

Course Overview

- Math review
- Algorithm development and analysis
 - Running time
- Sorting
 - Insertion sort, selection sort, merge sort, quick sort
- Graph Algorithms
 - Topological Sort
 - Shortest-Path Algorithms
 - Dijkstra's Algorithm
 - Network Flow Problems

Course Overview

- Graph Algorithms
 - Minimum Spanning Tree
 - Prim's Algorithm
 - Kruskal's Algorithm
- Queueing Theory
 - Little's Theorem, Erlang Traffic
 - M/M/1
- Research papers and Development project

Algorithmic Complexity and Graph Theory

Math Review

- Floors, ceilings, exponents and logarithms
 - Definitions and manipulations
- Series: Arithmetic and Geometric series
 - Definitions and manipulations
- Proof Techniques: Read the definition, components, and how to use the following
 - Proof by induction
 - Proof by counterexample
 - Proof by contradiction

Math Review

- Floors, ceilings, exponents and logarithms
 - Definitions and manipulations
- Series: Arithmetic and Geometric series
 - Definitions and manipulations

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

$$\sum_{i=1}^{N} i^2 = \frac{N(N+1)(2N+1)}{6}$$

Math Review

- Proof Techniques: Read the definition, components, and how to use the following
 - Proof by induction
 - Example: Prove $\sum_{j=1}^{n} (2j-1) = n^2$ (is a perfect square)
 - Proof by counterexample
 - Proof by contradiction
- Recursion
 - Read the definition and rules
 - Analyze running time of recursive algorithm

Algorithm Analysis

- Asymptotic analysis of an algorithm
- Best-case, worst-case and average-case analysis
- Rate of growth: Definitions and Notation (O, Ω , Θ, o)
 - Proofs for specific examples

Asymptotic Notations

- O() upper bound
 - Operation: T(N) = O(g(N)) if there are positive constants c and n_0 such that $T(N) \le cg(N)$ when $N \ge n_0$
- \blacksquare $\Omega()$ lower bound
 - O Definition: $T(N) = \Omega(g(N))$ if there are positive constants cand n_0 such that $T(N) \ge cg(N)$ when $N \ge n_0$
- Θ () tight bound
 - O Definition: $T(N) = \Theta(g(N))$ if and only if T(N) = O(g(N)) and $T(N) = \Omega(g(N))$
- o() strict upper bound
 - Operation: T(N) = o(g(N)) if for all constants c there exists an n_0 such that T(N) < cg(N) when $N > n_0$

Asymptotic Analysis

- O-notation gives an upper bound for a function to within a constant factor
- lacksquare Ω -notation gives an lower bound for a function to within a constant factor
- Θ-notation bounds a function to within a constant factor
 - The value of f(n) always lies between $c_1 g(n)$ and $c_2 g(n)$ inclusive

Maximum Subsequence Sum Problem

- Maximum subsequence sum problem
 - O Given (possibly negative) integers A_1 , A_2 , ..., A_N , find the maximum value (≥ 0) of: $\sum_{k=i}^{j} A_k$
 - E.g. <1, -4, 4, 2, -3, 5, 8, -2>
 The maximum sum is 16
 - O Solution # 1: $T(N) = O(N^3)$
 - O Solution # 2: $T(N) = O(N^2)$
 - Solution # 3: Recursive, "divide and conquer" $T(N) = O(N \log N)$
 - O Solution # 4: Online Algorithm T(N) = O(N)

Sorting

- Insertion sort; Worst case: $O(N^2)$; Best Case O(N)
- Selection sort; Worst-case: O(N²)
- Shell sort; Worst-case: O(N^{3/2})
- Merge sort; Worst-case: O(N log₂ N)
- Quick sort; Worst-case: O(N²)

Insertion Sort

- Algorithm:
 - Start with empty list S and unsorted list A of N items
 - For each item x in A
 - Insert x into S, in sorted order
- Example:

Selection Sort

Algorithm:

- Start with empty list S and unsorted list A of N items
- for (i = 0; i < N; i++)</p>
 - $\mathbf{x} \leftarrow \text{item in A with smallest key}$
 - Remove x from A
 - Append x to end of S

Merge Sort

Quick Sort Algorithm

- quicksort (array: S)
 - 1. If size of S is 0 or 1, return
 - Pivot = Pick an element v in S
 - 3. Partition $S \{v\}$ into two disjoint groups $S1 = \{x \in (S \{v\}) \mid x < v\}$ $S2 = \{x \in (S \{v\}) \mid x > v\}$
 - 4. Return {quicksort(S1), followed by v, followed by quicksort(S2)}

Quick Sort

Comparison of Sorting Algorithms

Sort	Worst Case	Average Case	Best Case	Comments
InsertionSort	$\Theta(N^2)$	$\Theta(N^2)$	Θ(N)	Fast for small N
ShellSort	$\Theta(N^{3/2})$	$\Theta(N^{7/6})$?	Θ(N log N)	Increment sequence?
HeapSort	Θ(N log N)	Θ(N log N)	Θ(N log N)	Large constants
MergeSort	Θ(N log N)	Θ(N log N)	Θ(N log N)	Requires memory
QuickSort	$\Theta(N^2)$	Θ(N log N)	Θ(N log N)	Small constants

Graph Algorithms

- Graph Definition
 - Directed graph, undirected graph, complete graph
- Graph Algorithms
 - Topological sort
 - Shortest paths
 - Network flow
 - Minimum spanning tree

Topological Sort

- Order the vertices in a directed acyclic graph (DAG), such that if (u, v) ∈ E, then u appears before v in the ordering
- Solution #1 is $O(|V|^2)$
- Solution #2 is O(|V| + |E|) (queue implementation)

		In	degree	Before	e Dequeu	e #		
Vertex	1	2	3	4	5	6	7	
v_1	0	0	0	0	0	0	0	
v_2	1 (0	0	0	0	0	0	
v_3	2	1	1	1	0	0	0	
v_4	3	2	1 (0	0	0	0	
v_5	1	1 (0	0	0	0	0	
v_6	3	3	3	3	/2	1	0	
v_7	2	2	2	1 (0	0	0	
Enqueue	v_1	ν_2	v_5	v_4	v_3, v_7		v_6	
Dequeue	ν_1	ν_2	v_5	ν_4	v_3	v_7	v_6	

Possible topological orderings:

$$V_1$$
, V_2 , V_5 , V_4 , V_3 , V_7 , V_6 and V_1 , V_2 , V_5 , V_4 , V_7 , V_3 , V_6 .

Shortest Path Problems

- Input is a weighted graph where each edge (v_i, v_j) has cost c_{i, i} to traverse the edge
- Cost of a path $v_1v_2...v_N$ is
 - Weighted path cost
- Unweighted shortest path (number of edges on path): O(|E| + |V|)
- Weighted shortest path (weighted path cost)
 - Dijkstra's algorithm : O(|E| log |V|)

Dijkstra's Algorithm

Dijkstra's Adjacency List

ν	known	d_{v}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
v_3	F	∞	0
v_4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
ν_7	F	∞	0

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
v_3	F	∞	0
v_4	F		v_1
v_5	F	∞	0
v_6	F	∞	0
v_7	F	∞	0

ν	known	d_{v}	p_{ν}
v_1	T	0	0
ν_2	F	2	v_1
v_3	F	3	v_4
ν_4	(T)		v_1
v_5	F	3	v_4
v_6	F	9	v_4
ν_7	F	5	v_4

ν	known	d_{ν}	р
v_1	T	0	(
v_2	T	2	ν
v_3	F	3	ν
v_4		(1)	ν
v_5	F	3	ν
v_6	F	9	ν
v_7	F	5	ν

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3		(3)	v_4
ν_4	T		ν_1
v_5	T	(3)	ν_4
v_6	F	8	v_3
v_7	F	5	ν_4

ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
v_5	T	3	v_4
v_6	F	6	v_7
ν_7	T	5	v_4

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	T	2	v_1
v_3	T	3	v_4
v_4	T	1	v_1
v_5	T	3	v_4
v_6	T	6	v_7
v_7	T	5	v_4

Network Flow Problems

- Given a directed graph G = (V, E) with edge capacities $c_{v, w}$
- Give two vertices s, called the source, and t, called the sink
- Through any edge, (v, w), at most c_{v, w} units of "flow" may pass
- At any vertex v, that is not either s or t, the total flow coming in must equal the total flow coming out

Maximum Flow Algorithm

Minimum Spanning Tree Problem

- Find a minimum-cost set of edges that <u>connect all</u> <u>vertices</u> of a graph at <u>lowest total cost</u>
- Solution # 1: Prim's Algorithm:
 - O(|V|²) without heap
 - O(|E| log |V|) using binary heaps
- Solution # 2: Kruskal's Algorithm: O(|E| log |V|)

Prim's Algorithm

- Solution #1 (Prim's Algorithm (1957))
 - Start with an empty tree T
 - T = {x}, where x is an arbitrary node in the input graph
 - While T is not a spanning tree
 - Find the lowest-weight edge that connects a vertex in T to a vertex not in T
 - Add this edge to T
 - T will be a minimum spanning tree

Prim's Algorithm: Example

0

 $v_1 \\ v_4$

 v_1

v_3	v_1 v_6	(v ₄)	v_2 v_7	(v ₅)	-	v_3	v_1 v_4 v_6	(v ₂) (v ₇)	(v ₅)	→	v_3	v_1 v_6	$\frac{2}{v_4}$	v_5
(v ₃)	v_1 v_2 v_6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v_2	(v_5)	→	(v ₃)-	v_1 v_2 v_4 v_6	v_2	(v ₅)	-	(v ₃)-	2	$ \begin{array}{c} 2 \\ \hline v_4 \\ 1 \end{array} $	v_5
						(v ₃)-	$ \begin{array}{c c} v_1 & 2 \\ \hline 2 & v_4 \\ \hline v_6 & 1 \end{array} $	$\begin{pmatrix} v_2 \\ 4 \\ 6 \\ v_7 \end{pmatrix}$	v ₅					

ν	known	d_{v}	p_{ν}
v_1	F	0	0
v_2	F	∞	O
v_3	F	∞	0
v_4	F	∞	0
v_5	F	∞	0
v_6	F	∞	0
ν_7	F	∞	0

known

T

T

 v_1

 v_5 v_6

ν	known	d_{ν}	p_{ν}
v_1	Т	О	0
v_2	F	2	v_1
v_3	F	4	v_1
v_4	F	1	v_1
v_5	F	∞	O
v_6	F	∞	O
v_7	F	∞	O

v_7	F	∞	0
ν	known	d_{v}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
v_3	T	2	v_4
v_4	T	1	v_1

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
v_3	F	2	v_4
v_4	T	1	v_1
v_5	F	7	v_4
v_6	F	8	v_4
ν_7	F	4	v_4

ν	known	d_{v}	p_{ν}
$\overline{v_1}$	Т	0	0
v_2	T	2	v_1
v_3	T	2	v_4
v_4	T	1	v_1
v_5	T	6	v_7
v_6	T	1	v_7
ν_7	T	4	v_4

Kruskal's algorithm

- Solution #2 (Kruskal's algorithm (1956))
 - Start with T = V (with no edges)
 - For each edge in increasing order by weight
 - If adding edge to T does not create a cycle
 - Then add edge to T
 - T will be a minimum spanning tree

Kruskal's Algorithm: Example

 (v_1, v_3)

 (v_4, v_7)

 (v_3, v_6)

 (v_5, v_7)

6

Queueing Theory

Characteristics of Queueing Process

- Arrival patterns of customers
- Service patterns of servers
- Queue disciplines
- System capacity
- Number of service channel
- Number of service stages

Solution

Now, that we know there are 5 calls/hr on average in the busy-hour-time, we should just put 5 trunk lines. **RIGHT?**

The number of calls in a hour is a random variable and follows a Poisson distribution with expected value of 5 calls/hour

Solution

Now, that we know there are 5 calls/ hr on average in the busy-hour-time, we should just put 5 trunk lines. **RIGHT?**

The number of calls in a hour is a random variable and follows a Poisson distribution with expected value of 5 calls/ hour

To carry 5 Erlangs of traffic (5 calls/ hr with average call duration of 1 hour) with blocking probability of 0.01 only, 11 trunk lines are needed

Little's Theorem

Length = **A**rrival-rate x **W**ait-time

Little's law states that time-average of queue length is equal to the product of the arrival rate and the customer-average waiting time (response time)

$$L = E[N] = \lambda . E[T] = \lambda . W$$

Little's Theorem

- Little's formulas are:
 - \circ L = λ W
 - \circ $L_q = \lambda W_q$
- L_q = mean # of customer in the queue
- L = mean # of customer in the system
- λ = arrival rate
- $E[T] = E[T_a] + E[S] => W = W_a + 1/\mu$

Summary of general results for G/G/c queues

$$\rho = \frac{\lambda}{c\mu}$$
 Traffic intensity; offered work load rate to a server

$$L = \lambda W$$
 Little's formula

$$L_q = \lambda W_q$$
 Little's formula

$$W = W_q + \frac{1}{\mu}$$
 Expected - value argument

$$p_b = \frac{\lambda}{c\mu} = \rho$$
 Busy probability for an arbitrary server

$$r = \frac{\lambda}{\mu}$$
 offered work load rate

$$L = L_q + r$$

$$p_0 = 1 - \rho$$
 G/G/1 empty system probability

$$L = L_q + (1 - p_0)$$

M/M/1 queue Steady State Solution

The full steady state solution for M/M/1 system is the geometric probability function

$$p_n = (1-\rho)\rho^n$$
 $(\rho = \frac{\lambda}{\mu} < 1)$

- Note the existence of a steady state solution depends on the condition that $\rho < 1$
 - Equivalently $\lambda < \mu$
 - o Intuitively if $|\lambda > \mu|$ the mean arrival rate > mean service rate
 - Server gets further and further behind; system size increases without bound over time
- Why there is no steady state solution when $\lambda = \mu$

M/M/1 queue Steady State Solution

- Why there is no steady state solution when $\lambda = \mu$
 - Infinite build up
 - As the queue grows it is more and more difficult for the server to decrease the queue
 - Average service rate is no higher than the average arrival rate

Tentative Exam Structure

- Short Multiple Choice Questions
 - 10 multiple choice questions with 2 points each
- Short & Medium Type Questions
 - 10 to 12 short questions with 5 points each
 - 2 to 3 medium questions with 10 points each

- When: Tuesday (11/28) 7:10 pm 9:10 pm (2 hours)
- Where: In Class

Conclusion

Please take a few minutes to complete the online course evaluations.

Thank you for taking IS 709/809.

Good Luck!