

AN HONORS UNIVERSITY IN MARYLAND

IS 709/809: Computational Methods in IS Research

Queueing Theory Introduction

Nirmalya Roy Department of Information Systems University of Maryland Baltimore County

www.umbc.edu

Introduction: Statistics of things Waiting in Lines

- Wait in line in our cars in traffic jam or at toll booths
- Wait on hold for an operator to pick up telephone calls
- Wait in line at supermarkets to check out
- Wait in line at fast food restaurants
- Wait in line at bank and post offices

.

- More demand for service than there is facility for service available
 - Shortage of available servers; economically infeasible; space limit

Introduction

Limitations can be removed partially

- Need to know how much service should then be made available
- How long must a customer wait? And how many people will form in the line?
- Queueing theory attempt to answer those questions
 - Detailed mathematical analysis

Probability models to characterize empirical processes

- o mathematical analysis to calculate performance measures
- probability distributions to model router's interarrival and service times
 - help to determine average queueing delay/queue length

Characteristics of Queueing Process

- Arrival patterns of customers
- Service patterns of servers
- Queue disciplines
- System capacity
- Number of service channel
- Number of service stages

Arrival patterns of customers

- Process of arrivals is stochastic
- Necessary to know the probability distribution describing the times between successive customer arrivals
 - Interarrival times
 - Batch or Bulk arrivals
- Reaction of a customer upon entering the system
 - Irrelevant to the waiting time
 - Decides not to enter the queue upon arrival --- *balked*
 - Enter the queue, but after some time loose patience and decide to leave --- *reneged*

Arrival Patterns

- Arrival pattern changes or does not change with time
 - An arrival pattern that does not change with time
 - Probability distribution describing the input process is timeindependent
 - A stationary arrival pattern
 - Not time-independent
 - A non-stationary arrival pattern

Service Patterns

- A probability distribution is needed to describe the sequence of customer service times
- Service may be single or batch
 - One customer being served at a time by a given server
 - Customer may be served simultaneously by the same server
 - A computer with parallel processing
 - Sightseers on a guided tour
 - People boarding a train

Queue Discipline

The manner in which customers are selected for service

- First come first served (FCFS)
- Last come first served (LCFS)
 - Stored items in a warehouse, easier to reach the nearest items
- A variety of priority schemes
 - Higher priorities will be selected for service ahead of those with lower priorities
 - Preemptive
 - Higher priority is allowed to enter service immediately
 - Non-Preemptive
 - Highest priority customer goes to the head of the queue but cannot get into service until the customer presently in service is completed

System Capacity

Physical limitation to the amount of waiting room

- Line reaches a certain length, no further customers are allowed to enter until space becomes available
- Finite queueing situations
- Limited waiting room can be viewed as one with force balking

Number of Service Channels

- Design multi-server queueing systems to be fed by a single line
- Specify the number of service channels
 - Typically refer to the number of parallel service stations

Single server queue

Single server (arrivals when server is full is queued)

Example: Small Grocery Store

Multiple single-server queue

Multiple single-server queues (A queue for each channel)

Example: Large supermarket with multiple cashiers

Multiple single-server queue

Multiple server

(single queue feeds into multiple servers)

Stages of Service

- Single stage of service
 - Hair styling salon
- Multistage of service
 - Physical examination procedure
 - Recycling or feedback may occur
 - Manufacturing process, quality control
 - Telecommunication network may process messages through a randomly selected sequence of nodes
 - Some messages may require rerouting on occasion through the same stage

History of Queueing Theory

How many trunk lines are required to provide service to a town?

Father of the field of queueing theory and teletraffic engineering

Telecommunication Network Design (TND)

Imagine a small village having a population of 100 telephone users; how many 'trunk lines' are needed to connect this village's telephone exchange to a long-distance telephone exchange?

Local exchange

Single trunk line

long waits and blocked calls

A trunk line for every user

economically inefficient

Trunk line: a circuit connecting telephone switchboards or other switching equipment.

Solution

It will be highly unlikely that all 100 users will want to use their service all the time

What is the average demand like?

Assume that **on average** there are **5 calls/ hr** in the busiest hour of the day and the average call lasts for an hour each.

Solution

Now, that we know there are 5 calls/hr on average in the busy-hour-time, we should just put 5 trunk lines. **RIGHT?**

WRONG! Calls bunch up! 0.15 $\mu = 5$ 0.100.05 0.00 2 10 0 4 6 8

The number of calls in a hour is a random variable and follows a Poisson distribution with expected value of 5 calls/hour

Solution

Now, that we know there are 5 calls/ hr on average in the busy-hour-time, we should just put 5 trunk lines. **RIGHT?**

The number of calls in a hour is a random variable and follows a Poisson distribution with expected value of 5 calls/ hour

To carry 5 erlangs of traffic (5 calls/ hr with average call duration of 1 hour) with blocking probability of 0.01 only, 11 trunk lines are needed

A Simple Deterministic Queue

Interarrival time is exactly 1 minute and Service times is also exactly 1 minute.

A Stochastic Queue

Interarrival time is .5 minute or 1.5 minute with equal probability expected interarrival time = 1 minute

Service time is .5 minute or 1.5 minute with equal probability expected service time = 1 minute

This queue is unstable since the interarrival time and service time are equal (Due to stochastic nature of arrivals, arrivals would bunch up)

Stability of Queue

For a stable queue, the average service rate (μ) must be more than the arrival rate (λ); the traffic intensity ρ (= λ/μ) < 1

Lightly loaded queue

Poisson arrival process (rate $\lambda = 0.1$ arrivals/ minute); Exponential service (rate $\mu = 1$ departure/ minute)

Queue simulation; λ = 0.1, μ = 1

 $\rho = \lambda/\mu = 0.1$

Moderately loaded queue

Poisson arrival process (rate = λ = 0.5 arrivals/ minute); Exponential service (rate= μ = 1 departure/ minute)

 $\rho = \lambda/\mu = 0.5$

Heavily loaded queue

Poisson arrival process (rate = λ = 0.99 arrivals/ minute); Exponential service (rate= μ = 1 departure/ minute)

Queue simulation; λ = 0.99, μ = 1

Notation of a Queueing System **A/S/m/B/K/SD** (Kendall's notation)

Interarrival time and service time is assumed to be IID, therefore, only the family of distributions needs to be specified

Kendall's notation

M/G/1: Poisson arrivals; General service distributions;
 1 server (Infinite buffer, population; FCFS)

 G/G/1: General arrival and service distributions; 1 server (Infinite buffer, population; FCFS)

M/D/2/∞/FCFS: Poisson arrivals; deterministic service time; two parallel servers; no restrictions on the maximum # allowed in the system; and FCFS queue disciplines

Measuring System Performance

- Effectiveness of a queueing system
- Generally 3 types of system responses of interest
 - Waiting time
 - Customer accumulation manner
 - A measure of the idle time of the server
- Queueing systems have stochastic elements
 - Measures are often random variables and their probability distributions

Measuring System Performance

- Two types of customer waiting times
 - Time a customer spends in the queue
 - o amusement park
 - Total time a customer spends in the system (queue + service)
 - Machines that need repairs
 - Customer accumulation measures
 - Number of customers in the queue
 - Total number of customers in the system
- Idle-service measures of a server
 - Time the entire system is devoid of customers

Little's Theorem

- One of the most powerful relationship in queueing theory
 - Developed by John D. C. Little in early 1960s
 - Related the steady-state mean system sizes to the steady state average customer waiting times
- T_q = time a customer spends waiting in the queue
 - T = total time a customer spends in the system= response time
- T = T_q + S; where S is the service time and T, T_q, and S all are random variables
- Two often used measures of system performance
 - Mean waiting time in queue; $W_q = E[T_q]$
 - Mean waiting time in the system; W = E [T]

Little's Theorem

Mean number of customers (backlog)

Number of customers in queue: N_q Number of customers obtaining service: N_s Number of customers in system $N = (N_q + N_s)$

Average waiting time of customers (delay)

Waiting time for customers in queue: T_q Service time for customers: **S** Total time (response time) of customers in system **T** = $(T_q + S)$

All the above metrics are RVs, and therefore we will calculate their expectations

Little's Law

Little's Law related the two primary performance measures of any queue

Mean number of customers • Average waiting time of customers

Little's Theorem

Length = Arrival-rate x Wait-time

Little's law states that time-average of queue length is equal to the product of the arrival rate and the customer-average waiting time (response time)

Little's Theorem

- Little's formulas are:
 - \circ L = λ W
 - \circ L_q = λW_q
- L_q = mean number of customer in the queue
- L = mean number of customer in the system
- λ = arrival rate
- $E[T] = E[T_q] + E[S] => W = W_q + 1/\mu$

Little's Theorem Proof

Little's Theorem Proof

- Number of customers (say N) arrive over the time period (0,T) is 4
- Find out the value of L and W from the graph
- $L = [1(t_2 t_1) + 2(t_3 t_2) + 1(t_4 t_3) + 2(t_5 t_4) + 3(t_6 t_5) + 2(t_7 t_6) + 1(T t_7)]/T$ = (area under curve)/T = $(T + t_7 + t_6 - t_5 - t_4 + t_3 - t_2 - t_1)/T$

$$W = [(t_3 - t_1) + (t_6 - t_2) + (t_7 - t_4) + (T - t_5)]/4$$

= $(T + t_7 + t_6 - t_5 - t_4 + t_3 - t_2 - t_1)/4$
= (area under curve)/N

Little's Theorem Proof

$$LT = WN \Longrightarrow L = \frac{N}{T}W \Longrightarrow L = \lambda W$$

where fraction (N/T) is the number of customers arriving over the time T and which is for this period, the arrival rate λ

$$L - L_q = \lambda(W - W_q) = \lambda(\cancel{1/\mu}) = \frac{\lambda}{\mu}$$

$$L - L_q = E[N] - E[N_q] = E[N - N_q] = E[N_s] = \frac{\lambda}{\mu}$$

So expected no. of customers in service in the steady state is λ/μ , also denoted by r. For a single server system r= ρ

Summary of General Results for G/G/c queues

 $\rho = \frac{\lambda}{c\mu}$ Traffic intensity; offered work load rate to a server $L = \lambda W$ Little's formula $L_{q} = \lambda W_{q}$ Little's formula $W = W_q + \frac{1}{\mu}$ Expected - value argument $p_{b} = \frac{\lambda}{c\mu} = \rho$ Busy probability for an arbitrary server $r = \frac{\lambda}{2}$ offered work load rate μ $L = L_a + r$ $p_0 = 1 - \rho$ G/G/1 empty system probability $L = L_a + (1 - p_0)$

Example: Little's Law

Assume that you receive 50 emails every day and that you archive your messages after responding to your email. The number of un-responded emails in your inbox varies between ~100 to ~200 and its average value is 150.

How long do you take to answer your emails?

L=150 emails $\lambda=50 \text{ emails/ day}$ $W=L/\lambda = 3 \text{ days}$

Example: Little's Law

Suppose that 10,800 HTTP requests arrive to a web server over the course of the busiest hour of the day. If we want to limit the mean waiting time for service to be under 6 seconds, what should be the largest permissible queue length?

> $\lambda = 10,800$ requests/ hour $\lambda = 3$ requests/ second W=6 seconds

Since
$$L_q = \lambda W_q$$

=> $L_q = 18$

Poisson Process & Exponential Distribution

- Stochastic queueing model
 - Assume interarrival times and service times obey the Exponential distribution
 - Equivalently arrival rate and service rate follow a Poisson distribution
- First derive the Poisson distribution
 - See whiteboard
- Show that assuming no. of occurrences in some time interval to be a Poisson random variable is equivalent to assuming time between successive occurrences to be an exponentially distributed random variable

- Consider an arrival counting process {N(t), t ≥ 0}
 - N(t) denotes the total no. of arrivals up to time t
- Assumption:
 - Probability that an arrival occurs between time t and time $(t + \Delta t) = \lambda \Delta t + o(\Delta t)$
 - Pr{an arrival occurs between t and t + Δ t} = $\lambda\Delta$ t + o(Δ t)
 - where λ is a constant independent of N(t)
 - O Δt is an incremental element
 - $o(\Delta t)$ denotes a negligible quantity when as $\Delta t \rightarrow 0$; $\lim_{\Delta t \rightarrow 0} \frac{o(\Delta t)}{\Delta t} = 0$
 - Pr{more than one arrival between t and t + Δ t} = o(Δ t)
 - Number of arrivals in non-overlapping intervals are statistically independent

- Calculate p_n(t) = probability of n arrivals in a time interval of length t, where n ≥ 0
- Develop differential difference equations for the arrival process

• $p_n(t + \Delta t) = Pr\{n \text{ arrivals in } t \text{ and none in } \Delta t\} +$ $Pr\{n-1 \text{ arrivals in } t \text{ and } 1 \text{ in } \Delta t\} +$ $Pr\{n-2 \text{ arrivals in } t \text{ and } 2 \text{ in } \Delta t\} + \dots$ + $\Pr\{no \ arrivals \ in \ t \ and \ n \ in \ \Delta t\}$. $p_n(t + \Delta t) = p_n(t)[1 - \lambda \Delta t - o(\Delta t)] + p_{n-1}(t)[\lambda \Delta t + o(\Delta t)] + o(\Delta t)$ where the last term $o(\Delta t)$ represents the terms Pr{n - j arrivals in t and j in Δt ; $2 \le j \le n$ }

- $p_n(t + \Delta t) = p_n(t)[1 \lambda \Delta t o(\Delta t)] + p_{n-1}(t)[\lambda \Delta t + o(\Delta t)] + o(\Delta t)$
 - For n = 0; $p_0(t + \Delta t) = p_0(t)[1 \lambda \Delta t o(\Delta t)]$
 - Rewriting;

$$p_0(t + \Delta t) - p_0(t) = -\lambda \Delta t p_0(t) + o(\Delta t)$$
 and

- $p_n(t + \Delta t) p_n(t) = -\lambda \Delta t p_n(t) + \lambda \Delta t p_{n-1}(t) + o(\Delta t) \text{ for } (n \ge 1)$
- Divide by Δt and take the limit as $\Delta t \rightarrow 0$ to obtain the differential-difference equations

$$\lim_{\Delta t \to 0} \left[\frac{p_0(t + \Delta t) - p_0(t)}{\Delta t} = -\lambda p_0(t) + \frac{o(\Delta t)}{\Delta t} \right]$$

$$\lim_{\Delta t \to 0} \left[\frac{p_n(t + \Delta t) - p_n(t)}{\Delta t} = -\lambda p_n(t) + \lambda p_{n-1}(t) + \frac{o(\Delta t)}{\Delta t} \right] \quad (n \ge 1)$$

Reduces to

$$\frac{dp_0(t)}{dt} = -\lambda p_0(t)$$

$$\frac{dp_n(t)}{dt} = -\lambda p_n(t) + \lambda p_{n-1}(t) \quad (n \ge 1)$$

 We have an infinite set of linear, first-order ordinary differential equations to solve

$$p_0(t) = Ce^{-\lambda t}$$
 where C = 1 since $p_0(0) = 1$

For n =1;
$$\frac{dp_1(t)}{dt} + \lambda p_1(t) = \lambda p_0(t) = \lambda e^{-\lambda t}$$

The solution to this equation is: $p_1(t) = Ce^{-\lambda t} + \lambda te^{-\lambda t}$

Using the boundary condition $p_n(0) = 0$ for all n > 0 yields C=0

$$p_1(t) = \lambda t e^{-\lambda t}$$

Therefore;
$$p_2(t) = \frac{(\lambda t)^2}{2} e^{-\lambda t}$$
, $p_3(t) = \frac{(\lambda t)^3}{3!} e^{-\lambda t}$

General formula is

$$p_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

which is a well known formula for a Poisson probability distribution with mean λt

- The random variable defined as the number of arrivals to a queueing system by time t
 - this random variable has a Poisson distribution with a mean of λt arrivals or with a mean arrival rate of λ.

Markovian Property of Exponential Distribution

- Markov process is characterized by its unique property of memoryless
 - the future states of the process are independent of its past history and depends solely on its present state
- Poisson processes constitute a special class of Markov processes
 - event occurring patterns follow the Poisson distribution
 - the inter-arrival times and service times follow the exponential distribution
- Exponential distribution is the continuous distribution that possesses the unique property of memoryless-ness

Markovian Property of Exponential Distribution

Recall the conditional probability law that

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

given the event B, the probability of the event A is equal to the joint probability of A and B divided by the probability of the event B

- Let T be the variable representing the random interarrival time between two successive arrivals at two time points
 - we have the following probabilities for the two mutuallyexclusive events

Memorylessness

$$p_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

- No arrival yet for a period of t seconds: $P(T \ge t) = e^{-\lambda t}$
- Having an arrival within a period of t seconds: $P(T \le t) = 1 e^{-\lambda t}$
- Prove that $P(T \le t + \Delta t \mid T \ge t) = P(0 \le T \le \Delta t)$
 - left-hand-side represents the probability of having an arrival by waiting ∆t seconds longer under the condition that no arrival has occurred during the past waiting period of t seconds with t ≥ 0
 - right-hand-side represents the probability of having an arrival if waiting for another Δt seconds
- The equation states that the probability of having an arrival during the next Δt seconds is independent of when the last arrival occurred

Memorylessness

• Prove that $P(T \le t + \Delta t \mid T \ge t) = \frac{P[(T \le t + \Delta t) \cap (T \ge t)]}{P(T \ge t)}$

$$=\frac{e^{-\lambda t}-e^{-\lambda(t+\Delta t)}}{e^{-\lambda t}}=1-e^{-\lambda\Delta t}=P(0\leq T\leq \Delta t)$$

Consider there has been no arrival during the last 10 seconds. Then the probability of having an arrival within the next 2 seconds is independent of how long there has been no arrival so far, namely,

$$P(T \le 10 + 2 \mid T \ge 10) = P(T \le 2)$$

Do not mistakenly think that

 $P(T \le 10 + 2 \mid T \ge 10) = P(T \le 12)$

Stochastic Process

- Stochastic process is the mathematical abstraction of an empirical process
 - o governed by the probabilistic laws (such as the Poisson process)
- A Family of Random Variables (RV) X = {X(t) | t ∈ T} defined over a given probability space, indexed by parameter t that varies over index set T, is called Stochastic Process
 - the set T is the time range and X(t) denotes the state of the process at time t
 - the process is classified as a discrete-parameter or continuous parameter process

Stochastic Process

- If T is countable sequence like T = {0, ±1, ±2,} or T
 = {0, 1, 2,}
 - Stochastic process {X(t), t ∈ T} is said to be a discreteparameter process
 - If T is an interval for example T = $\{t: -\infty < t < +\infty\}$ or

 $T = \{t: 0 < t < +\infty\}$

• Stochastic process $\{X(t), t \in T\}$ is called a continuous-parameter process

Markov Process

A discrete-parameter stochastic process

{X(t), t = 0, 1, 2,} or continuous-parameter stochastic process {X(t), t > 0} is a Markov process when

the conditional distribution of X(t_n) given the values of X(t₁), X(t₂), X(t₃),, X(t_{n-1}) depends only on the preceding value X(t_{n-1}); mathematically;

 $O \quad Pr\{X(t_n) \le x_n \,|\, X(t_1) = x_1, \, \dots, \, X(t_{n-1}) = x_{n-1}\} = Pr\{X(t_n) \le x_n \,|\, X(t_{n-1}) = x_{n-1}\}$

- More intuitively, given the "present" condition of the process, the future is independent of the "past"
 - The process is thus "memoryless"

Markov Process

Markov processes are classified according to:

- The nature of the index set of the process (discrete or continuous parameter)
- The nature of the state space of the process (discrete or continuous parameter)

State Space	Index set T (Type of Parameters)	
	Discrete	Continuous
Discrete	Discrete parameter Stochastic/Markov chain	Continuous parameter Stochastic/Markov chain
Continuous	Discrete parameter Continuous Stochastic/ Markov process	Continuous parameter Continuous Stochastic/ Markov process

Questions

?