NNNNNNNNNNNNNNNNNNNNNNNNNNNN

Computational Methods in IS Research
Fall 2017

Graph Algorithms
Minimum Spanning Tree

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County

www.umbc.edu

Minimum Spanning Tree Problem

Find a minimum-cost set of edges that connect all
vertices of a graph at lowest total cost

Applications

o Connecting “nodes” with a minimum of “wire”
m Networking
m Circuit design

o Collecting nearby nodes

m Clustering, taxonomy construction

o Approximating graphs

m Most graph algorithms are faster on trees

Minimum Spanning Tree

m Atreeis an acyclic, undirected, connected graph

m A spanning tree of a graph is a tree containing all
vertices from the graph

B A minimum spanning tree is a spanning tree, where
the sum of the weights on the tree’s edges are
minimal

Minimum Spanning Tree (cont’'d)

Dijkstra’s weighted shortest/
minimum cost path problem

Minimum
spanning tree:

@

Number of edges in MST is |[V]| - 1

No fixed start vertex like Dijkstra’s
Undirected graph

Minimizing summation of total edge

cost instead of finding distinct shortest path

O O O O

Minimum Spanning Tree (cont’'d)

m Problem
o Given an undirected, weighted graph G = (V, E) with weights
w(u, v) for each edge (u,v) € E
o Find an acyclic, connected graph G’ = (V’, E’), E' C E, that
minimizes Z(u’ wee WU, V)
o G’ isa minimum spanning tree of G
m There can be more than one minimum spanning tree of a graph G

o Two algorithms
m Prim’s algorithm
m Kruskal’s algorithm
m Differ in how a minimum edge is selected

Minimum Spanning Tree

m Solution #1 (Prim’s Algorithm (1957))
o Start with an empty tree T

o T={x}, where x is an arbitrary node in the input graph
o While T is not a spanning tree

m Find the lowest-weight edge that connects a vertexin T to a
vertex notinT

m AddthisedgetoT
o T will be a minimum spanning tree

Prim’s Algorithm: Example

SV
Input graph: W

() (o)
Owd®, oy @ Owum®
) W W= W -
)

) O,
Oum® Oum®
D -0, ® - 02w, ®

Q) OBNO (——

Ooam®
Minimum spanning tree: (vs———{v:) 46 (vs)
O==0

Prim’s Algorithm

m Similar to Dijkstra’s shortest-path
algorithm

m Except
O v.known=vinT

o v.dist =weight of lowest-weight edge
connectingvtoa known vertexinT

O v.path =last neighboring vertex

changing (lowering) v’'s dist value (same
as before)

o Undirected graph, so two entries for
every edge in the adjacency list

struct Vertex

{
List adj;
bool known;
DistType dist;
Vertex path;
// Other data

}s

'D.-

(5]
|3
s

B
Bl

Prim’s Algorithm (cont’'d)

void Graph::dijkstra(Vertex s)

{ for(5 5)
for each Vertex v {
{ Vertex v = smallest unknown distance vertex;
v.dist = INFINITY; if(v == NOT_A VERTEX)
v.known = false; break;
} v.known = true;
s.dist = 0; for each Vertex w adjacent to v

if(!w.known)
'If(v.dist + cvw < w.dist)

{

// Update w
Running time same as decrease(w.dist to v.dist + cvw);
Dijkstra: O(|E| log |V|) w.path = v;
using binary heaps }

Example

Prim’s Algorithm

known d, p, v known d, p, v known d Py

Vv

o R S N L

oS SR G SR SR SR

o O O ©O O O O

© 383838328328

S S S

Prim’s Algorithm: Example (cont’d)

Edges can be read
from this final table
Pv

v known d, p, v known d, p, v known d,

Vi T 0 0 Vi T 0 0 V] T 0 0
Vy T 2 Vi vy T 2 V1 V) T 2 Vi
V3 T 2 V4 V3 T 2 V4 V3 T 2 V4
Vq T 1 Vi V4 T 1 Vi Va4 T 1 vy
Vs F 7 Vg Vs F 6 Vs Vs T 6 vy
Vg F 5 V3 Ve F 1 vy Vg T 1 V7
V7 F 4 Vg V7 T 4 V4 V7 T 4 V4

Prim’s Algorithm: Analysis

m Running time = O(|V|?) without heap
o Optimal for dense graph
m O(|E| log |V]|) using binary heaps

o Good for sparse graph

Minimum Spanning Tree

m Solution #2 (Kruskal’s algorithm (1956))
o Start with T =V (with no edges)

o For each edge in increasing order by weight
m |f adding edge to T does not create a cycle
m ThenaddedgetoT

o T will be a minimum spanning tree

Kruskal’'s Algorithm: Example

Input graph:

Collection of Trees @
|V| single-node Trees

Edge Weight Action

(vq, v4) 1 Accepted

(vg, v7) 1 Accepted

(v, v2) 2 Accepted

(v3, v4) 2 Accepted

(v, v4) 3 Rejected

(vq, v3) 4 Rejected

(v, v7) 4 Accepted Algorithm Terminates \J
(v3, vg) 5 Rejected Now only one Tree

(vs, v7) 6 Accepted Itis a MST

Kruskal’'s Algorithm

void Graph::kruskal() Uses Disjoint Set and Priority Queue

{
int edgesAccepted = 03 data structures

DisjSet ds(NUM_VERTICES);
PriorityQueue<kEdge> pq(getEdges());
Edge e;

Vertex u, v;

The edges can be sorted, but building
a heap in linear time is a better option

deleteMins give the edge to be tested
while(edgesAccepted < NUM_VERTICES - 1) In order

{

pq.deleteMin(e); // Edge e = (u. v) deleteMin: O(|V| log |V|)
SetType uset = ds.find(u);

SetType vset = ds.find(v); find: O(|E| log |V])

if(uset != vset)

{

// Accept the edge
edgesAccepted++;
ds.unionSets(uset, vset);

Kruskal’s Algorithm: Analysis

m Worst-case: O(|E| log |E|)
m Since |E| = O(|V|?), worst-case also O(|E| log |V])

O Running time dominated by heap operations

m Typically terminates before considering all edges,
so faster in practice

Summary

m Finding set of edges that minimally connect all
vertices in a graph

m Fast algorithm with many important applications

m Utilizes advanced data structures to achieve fast
performance

