

Computational Methods in IS Research Fall 2017

Graph Algorithms Minimum Spanning Tree

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

Minimum Spanning Tree Problem

- Find a minimum-cost set of edges that <u>connect all</u> <u>vertices</u> of a graph at <u>lowest total cost</u>
- Applications
 - Connecting "nodes" with a minimum of "wire"
 - Networking
 - Circuit design
 - Collecting nearby nodes
 - Clustering, taxonomy construction
 - Approximating graphs
 - Most graph algorithms are faster on trees

Minimum Spanning Tree

- A <u>tree</u> is an acyclic, undirected, connected graph
- A <u>spanning tree</u> of a graph is a tree containing all vertices from the graph
- A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

Minimum Spanning Tree (cont'd)

cost instead of finding distinct shortest path

Minimum Spanning Tree (cont'd)

Problem

- O Given an undirected, weighted graph G = (V, E) with weights w(u, v) for each edge $(u, v) \in E$
- Find an acyclic, connected graph G' = (V', E'), $E' \subseteq E$, that minimizes $\sum_{(u, v) \in E'} w(u, v)$
- G' is a minimum spanning tree of G
 - There can be more than one minimum spanning tree of a graph G
- Two algorithms
 - Prim's algorithm
 - Kruskal's algorithm
 - Differ in how a minimum edge is selected

Minimum Spanning Tree

- Solution #1 (Prim's Algorithm (1957))
 - Start with an empty tree T
 - \circ T = {x}, where x is an arbitrary node in the input graph
 - While T is not a spanning tree
 - Find the lowest-weight edge that connects a vertex in T to a vertex not in T
 - Add this edge to T
 - T will be a minimum spanning tree

Prim's Algorithm: Example

Minimum spanning tree:

Prim's Algorithm

- Similar to Dijkstra's shortest-path algorithm
- Except
 - \circ v.known = v in T
 - v.dist = weight of lowest-weight edge connecting v to a known vertex in T
 - v.path = last neighboring vertex changing (lowering) v's dist value (same as before)
 - Undirected graph, so two entries for every edge in the adjacency list

```
struct Vertex
{
    List adj;
    bool known;
    DistType dist;
    Vertex path;
    // Other data
};
```


Prim's Algorithm (cont'd)

using binary heaps

```
void Graph::dijkstra( Vertex s )
                                      for(;;)
    for each Vertex v
                                          Vertex v = smallest unknown distance vertex;
                                          if( v == NOT_A_VERTEX )
        v.dist = INFINITY;
        v.known = false;
                                              break;
                                          v.known = true;
                                          for each Vertex w adjacent to v
    s.dist = 0;
                                              if(!w.known)
                                                  if( v.dist + cvw < w.dist )</pre>
                                                      // Update w
                                                      decrease( w.dist to v.dist + cvw );
   Running time same as
   Dijkstra: O(|E| log |V|)
                                                      w.path = v;
```

Prim's Algorithm: Example

ν	known	d_{v}	p_{ν}	ν	known	d_{v}	p_{ν}	ν	known	d_{v}	p_{ν}
v_1	F	0	0	$\overline{v_1}$	Т	0	0	$\overline{v_1}$	Т	0	0
v_2	F	∞	0	v_2	F	2	v_1		_	2	v_1
v_3	F	∞	0	v_3	F	4			F	2	v_4
v_4	F	∞	0		F	1	v_1	v_4	T	1	v_1
v_5	F	∞	0	v_5	F	∞	0		_	7	v_4
v_6	F	∞	0	v_6	F	∞	0	v_6	F	8	v_4
v_7	F	∞	0	v_7	F	∞	0	v_7	F	4	v_4

Prim's Algorithm: Example (cont'd)

Prim's Algorithm: Analysis

- Running time = O(|V|²) without heap
 - Optimal for dense graph
- O(|E| log |V|) using binary heaps
 - Good for sparse graph

Minimum Spanning Tree

- Solution #2 (Kruskal's algorithm (1956))
 - Start with T = V (with no edges)
 - For each edge in increasing order by weight
 - If adding edge to T does not create a cycle
 - Then add edge to T
 - T will be a minimum spanning tree

Kruskal's Algorithm: Example

 (v_1, v_3)

 (v_4, v_7)

 (v_3, v_6)

 (v_5, v_7)

6

Kruskal's Algorithm

```
void Graph::kruskal( )
    int edgesAccepted = 0;
    DisjSet ds( NUM_VERTICES );
    PriorityQueue<Edge> pq( getEdges( ) );
    Edge e;
    Vertex u, v;
    while( edgesAccepted < NUM VERTICES - 1 )</pre>
        pq.deleteMin( e ); // Edge e = (u. v)
        SetType uset = ds.find( u );
        SetType vset = ds.find( v );
        if( uset != vset )
            // Accept the edge
            edgesAccepted++;
            ds.unionSets( uset, vset );
```

Uses Disjoint Set and Priority Queue data structures

The edges can be sorted, but building a heap in linear time is a better option

deleteMins give the edge to be tested in order

```
v) deleteMin: O(|V| log |V|)
find: O(|E| log |V|)
```

Kruskal's Algorithm: Analysis

- Worst-case: O(|E| log |E|)
- Since $|E| = O(|V|^2)$, worst-case also $O(|E| \log |V|)$
 - Running time dominated by heap operations
- Typically terminates before considering all edges, so faster in practice

Summary

- Finding set of edges that minimally connect all vertices in a graph
- Fast algorithm with many important applications
- Utilizes advanced data structures to achieve fast performance