
Computational Methods in IS Research
Fall 2017

Graph Algorithms
Minimum Spanning Tree

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Minimum Spanning Tree Problem

 Find a minimum-cost set of edges that connect all
vertices of a graph at lowest total cost

 Applications

 Connecting “nodes” with a minimum of “wire”
 Networking

 Circuit design

 Collecting nearby nodes

 Clustering, taxonomy construction

 Approximating graphs

 Most graph algorithms are faster on trees

Minimum Spanning Tree

 A tree is an acyclic, undirected, connected graph

 A spanning tree of a graph is a tree containing all
vertices from the graph

 A minimum spanning tree is a spanning tree, where
the sum of the weights on the tree’s edges are
minimal

Minimum Spanning Tree (cont’d)

Graph:

Minimum

spanning tree:

Dijkstra’s weighted shortest/

minimum cost path problem

 Number of edges in MST is |V| - 1

 No fixed start vertex like Dijkstra’s

 Undirected graph

 Minimizing summation of total edge

cost instead of finding distinct shortest path

Minimum Spanning Tree (cont’d)

 Problem

 Given an undirected, weighted graph G = (V, E) with weights
w(u, v) for each edge (u, v)  E

 Find an acyclic, connected graph G’ = (V’, E’), E’  E, that

minimizes (u, v)  E’ w(u, v)

 G’ is a minimum spanning tree of G
 There can be more than one minimum spanning tree of a graph G

 Two algorithms
 Prim’s algorithm

 Kruskal’s algorithm

 Differ in how a minimum edge is selected

Minimum Spanning Tree

 Solution #1 (Prim’s Algorithm (1957))

 Start with an empty tree T

 T = {x}, where x is an arbitrary node in the input graph

 While T is not a spanning tree
 Find the lowest-weight edge that connects a vertex in T to a

vertex not in T

 Add this edge to T

 T will be a minimum spanning tree

Prim’s Algorithm: Example

Input graph:

Minimum spanning tree:

Prim’s Algorithm

 Similar to Dijkstra’s shortest-path
algorithm

 Except
 v.known = v in T

 v.dist = weight of lowest-weight edge
connecting v to a known vertex in T

 v.path = last neighboring vertex
changing (lowering) v’s dist value (same
as before)

 Undirected graph, so two entries for
every edge in the adjacency list

Prim’s Algorithm (cont’d)

Running time same as

Dijkstra: O(|E| log |V|)

using binary heaps

Prim’s Algorithm: Example

Prim’s Algorithm: Example (cont’d)

Edges can be read

from this final table

Prim’s Algorithm: Analysis

 Running time = O(|V|2) without heap
 Optimal for dense graph

 O(|E| log |V|) using binary heaps
 Good for sparse graph

Minimum Spanning Tree

 Solution #2 (Kruskal’s algorithm (1956))

 Start with T = V (with no edges)

 For each edge in increasing order by weight
 If adding edge to T does not create a cycle

 Then add edge to T

 T will be a minimum spanning tree

Kruskal’s Algorithm: Example

Input graph:
1st

1st

2nd

2nd
3rd4th

4th5th 6th

Collection of Trees

|V| single-node Trees

Algorithm Terminates

Now only one Tree

It is a MST

Kruskal’s Algorithm

Uses Disjoint Set and Priority Queue

data structures

The edges can be sorted, but building

a heap in linear time is a better option

deleteMins give the edge to be tested

in order

deleteMin: O(|V| log |V|)

find: O(|E| log |V|)

Kruskal’s Algorithm: Analysis

 Worst-case: O(|E| log |E|)

 Since |E| = O(|V|2), worst-case also O(|E| log |V|)
 Running time dominated by heap operations

 Typically terminates before considering all edges,
so faster in practice

Summary

 Finding set of edges that minimally connect all
vertices in a graph

 Fast algorithm with many important applications

 Utilizes advanced data structures to achieve fast
performance

