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Minimum Spanning Tree Problem

 Find a minimum-cost set of edges that connect all 
vertices of a graph at lowest total cost

 Applications

 Connecting “nodes” with a minimum of “wire”
 Networking

 Circuit design

 Collecting nearby nodes

 Clustering, taxonomy construction

 Approximating graphs

 Most graph algorithms are faster on trees



Minimum Spanning Tree

 A tree is an acyclic, undirected, connected graph

 A spanning tree of a graph is a tree containing all 
vertices from the graph

 A minimum spanning tree is a spanning tree, where 
the sum of the weights on the tree’s edges are 
minimal



Minimum Spanning Tree (cont’d)

Graph:

Minimum 

spanning tree:

Dijkstra’s weighted shortest/ 

minimum cost path problem

 Number of edges in MST is |V| - 1

 No fixed start vertex like Dijkstra’s

 Undirected graph

 Minimizing summation of total edge 

cost instead of finding distinct shortest path



Minimum Spanning Tree (cont’d)

 Problem

 Given an undirected, weighted graph G = (V, E) with weights 
w(u, v) for each edge (u, v)  E

 Find an acyclic, connected graph G’ = (V’, E’), E’  E, that 

minimizes (u, v)  E’ w(u, v)

 G’ is a minimum spanning tree of G
 There can be more than one minimum spanning tree of a graph G

 Two algorithms
 Prim’s algorithm

 Kruskal’s algorithm

 Differ in how a minimum edge is selected



Minimum Spanning Tree

 Solution #1 (Prim’s Algorithm (1957))

 Start with an empty tree T

 T = {x}, where x is an arbitrary node in the input graph

 While T is not a spanning tree
 Find the lowest-weight edge that connects a vertex in T to a 

vertex not in T

 Add this edge to T

 T will be a minimum spanning tree



Prim’s Algorithm:  Example

Input graph:

Minimum spanning tree:



Prim’s Algorithm

 Similar to Dijkstra’s shortest-path 
algorithm

 Except
 v.known = v in T

 v.dist = weight of lowest-weight edge 
connecting v to a known vertex in T

 v.path = last neighboring vertex 
changing (lowering) v’s dist value (same 
as before)

 Undirected graph, so two entries for 
every edge in the adjacency list



Prim’s Algorithm (cont’d)

Running time same as

Dijkstra:  O(|E| log |V|)

using binary heaps



Prim’s Algorithm:  Example



Prim’s Algorithm:  Example (cont’d)

Edges can be read 

from this final table



Prim’s Algorithm:  Analysis

 Running time = O(|V|2) without heap
 Optimal for dense graph

 O(|E| log |V|) using binary heaps
 Good for sparse graph



Minimum Spanning Tree

 Solution #2 (Kruskal’s algorithm (1956))

 Start with T = V (with no edges)

 For each edge in increasing order by weight
 If adding edge to T does not create a cycle

 Then add edge to T

 T will be a minimum spanning tree



Kruskal’s Algorithm:  Example

Input graph:
1st

1st

2nd

2nd
3rd4th

4th5th 6th

Collection of Trees

|V| single-node Trees

Algorithm Terminates

Now only one Tree

It is a MST



Kruskal’s Algorithm

Uses Disjoint Set and Priority Queue

data structures

The edges can be sorted, but building 

a heap in linear time is a better option

deleteMins give the edge to be tested 

in order

deleteMin:  O(|V| log |V|)

find:  O(|E| log |V|)



Kruskal’s Algorithm:  Analysis

 Worst-case:  O(|E| log |E|)

 Since |E| = O(|V|2), worst-case also O(|E| log |V|)
 Running time dominated by heap operations

 Typically terminates before considering all edges, 
so faster in practice



Summary

 Finding set of edges that minimally connect all 
vertices in a graph

 Fast algorithm with many important applications

 Utilizes advanced data structures to achieve fast 
performance


