
Computational Methods in IS Research
Fall 2017

Graph Algorithms
Network Flow Problems

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Network Flow Problems
 Given a directed graph G = (V, E) with edge capacities cv, w

 The capacities could represent the amount of water that could
flow through a pipe or the amount of traffic that could flow on a
street between two intersections

 Give two vertices s, called the source, and t, called the
sink

 Through any edge, (v, w), at most cv, w units of “flow” may
pass

 At any vertex v, that is not either s or t, the total flow
coming in must equal the total flow coming out

Network Flow Problems (cont’d)

 The maximum flow problem is to determine the
maximum amount of flow that can pass from s to t

 No edge carries more flow than its capacity

 A vertex can combine and distribute flow in any
manner that it likes, as long as edge capacities are not
violated as long as flow conservation is maintained
(what does in must come out)

Network Flow Problem (cont’d)

 Given

 Directed graph G = (V, E) with edge capacities cv, w

 Source vertex s

 Sink vertex t

 Constraints
 Flow along directed edge (v, w) cannot exceed capacity cv, w

 At every vertex (except s and t), the total flow coming in
must equal the total flow going out

 Find
 Maximum amount of flow from s to t

Network Flow

 Example network graph (left) and its maximum flow
(right)

Maximum Flow Algorithm

 Flow graph Gf

 Indicates the amount of flow on each edge in the network

 Residual graph Gr

 Indicates how much more flow can be added to each edge
in the network

 Residual capacity = capacity – current flow

 Edges with zero residual capacity removed

 Augmenting path
 Path from s to t in Gr

 Edge with smallest residual capacity in the path indicates
amount by which flow can increase along path

Maximum Flow Algorithm (cont’d)

 Example

Network graph Initial flow graph Residual graph

Augmenting

path (s, b, d, t)

Maximum Flow Algorithm (cont’d)

 While an augmenting path exists in Gr

 Choose one

 Flow increase FI = minimum residual capacity along
augmenting path

 Increase flows along augmenting path in flow graph Gf

by FI

 Update residual graph Gr

Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, b, d, t)

Network graph Flow graph (f = 2) Residual graph

Augmenting

path (s, a, c, t)

Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, a, c, t)

Network graph Flow graph (f = 4) Residual graph

Augmenting

path (s, a, d, t)

Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, a, d, t)

Network graph Flow graph (f = 5) Residual graph

Terminates with maximum flow f = 5

Maximum Flow Algorithm (cont’d)

 Problem: Suppose we chose augmenting path (s, a, d, t)
first

Network graph Flow graph (f = 3) Residual graph

Terminates with maximum flow f = 3 (not optimal, suboptimal)

Maximum Flow Algorithm (cont’d)

 Solution
 Indicate potential for back flow in residual graph

 i.e., allow another augmenting path to undo some of the flow
used by a previous augmenting path

Network graph Flow graph (f = 3) Residual graph

New Augmenting Path (s, b, d, a, c, t)

Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, b, d, a, c, t)

Network graph Flow graph (f = 5) Residual graph

Terminates with maximum flow f = 5

Maximum Flow Algorithm: Analysis

 If edge capacities are rational numbers, then this
algorithm always terminates with maximum flow

 If capacities are integers and maximum flow is f, then
running time is O(f x |E|)
 Flow always increases by at least 1 with each augmenting

path

 Augmenting path can be found in O(|E|) time using
unweighted shortest-path algorithm

 Problem: Can be slow for large f

Maximum Flow Algorithm

 Variants
 Always choose augmenting path allowing largest increase in flow

 Finding such a path is similar to solving weighted shortest path
problem

 O(|E|) calls to O(|E| log |V|) Dijkstra’s algorithm

 Running time O(|E|2 log |V|)

 Always choose the augmenting path with the fewest edges
(unweighted shortest path)

 At most O(|E| x |V|) augmenting steps, each costing O(|E|) for call
to BFS

 Running time O(|E|2 |V|)

Dijkstra’s weighted shortest/

minimum cost path problem

Maximum Network

Flow Problem

Network Flow Problems

 Variants
 Multiple sources and sinks

 Create super-source with infinite-capacity links to each source

 Create super-sink with infinite-capacity links to each sink

 Min-cost flow problem

 Each edge has not only a capacity but also a cost per unit of flow

 Find maximum flow with minimum cost

 No known fast algorithm

Summary

 Network flow is an important algorithm with
numerous practical applications

 Running time depends on method for finding
augmenting path

 BFS: O(|E|2 |V|)

 Dijkstra’s algorithm: O(|E|2 log |V|)

