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Network Flow Problems
 Given a directed graph G = (V, E) with edge capacities cv, w

 The capacities could represent the amount of water that could 
flow through a pipe or the amount of traffic that could flow on a 
street between two intersections

 Give two vertices s, called the source, and t, called the 
sink

 Through any edge, (v, w), at most cv, w units of “flow” may 
pass

 At any vertex v, that is not either s or t, the total flow 
coming in must equal the total flow coming out



Network Flow Problems (cont’d)

 The maximum flow problem is to determine the 
maximum amount of flow that can pass from s to t

 No edge carries more flow than its capacity

 A vertex can combine and distribute flow in any 
manner that it likes, as long as edge capacities are not 
violated as long as flow conservation is maintained 
(what does in must come out)



Network Flow Problem (cont’d)

 Given

 Directed graph G = (V, E) with edge capacities cv, w

 Source vertex s

 Sink vertex t

 Constraints
 Flow along directed edge (v, w) cannot exceed capacity cv, w

 At every vertex (except s and t), the total flow coming in 
must equal the total flow going out

 Find
 Maximum amount of flow from s to t



Network Flow

 Example network graph (left) and its maximum flow 
(right)



Maximum Flow Algorithm

 Flow graph Gf

 Indicates the amount of flow on each edge in the network

 Residual graph Gr

 Indicates how much more flow can be added to each edge 
in the network

 Residual capacity = capacity – current flow

 Edges with zero residual capacity removed

 Augmenting path
 Path from s to t in Gr

 Edge with smallest residual capacity in the path indicates 
amount by which flow can increase along path



Maximum Flow Algorithm (cont’d)

 Example

Network graph Initial flow graph Residual graph

Augmenting

path (s, b, d, t)



Maximum Flow Algorithm (cont’d)

 While an augmenting path exists in Gr

 Choose one

 Flow increase FI = minimum residual capacity along 
augmenting path

 Increase flows along augmenting path in flow graph Gf

by FI

 Update residual graph Gr



Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, b, d, t)

Network graph Flow graph (f = 2) Residual graph

Augmenting

path (s, a, c, t)



Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, a, c, t)

Network graph Flow graph (f = 4) Residual graph

Augmenting

path (s, a, d, t)



Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, a, d, t)

Network graph Flow graph (f = 5) Residual graph

Terminates with maximum flow f = 5



Maximum Flow Algorithm (cont’d)

 Problem:  Suppose we chose augmenting path (s, a, d, t) 
first

Network graph Flow graph (f = 3) Residual graph

Terminates with maximum flow f = 3 (not optimal, suboptimal)



Maximum Flow Algorithm (cont’d)

 Solution
 Indicate potential for back flow in residual graph

 i.e., allow another augmenting path to undo some of the flow 
used by a previous augmenting path

Network graph Flow graph (f = 3) Residual graph

New Augmenting Path (s, b, d, a, c, t)



Maximum Flow Algorithm (cont’d)

 Example (cont’d) after choosing (s, b, d, a, c, t)

Network graph Flow graph (f = 5) Residual graph

Terminates with maximum flow f = 5



Maximum Flow Algorithm:  Analysis

 If edge capacities are rational numbers, then this 
algorithm always terminates with maximum flow

 If capacities are integers and maximum flow is f, then 
running time is O(f x |E|)
 Flow always increases by at least 1 with each augmenting 

path

 Augmenting path can be found in O(|E|) time using 
unweighted shortest-path algorithm

 Problem:  Can be slow for large f



Maximum Flow Algorithm

 Variants
 Always choose augmenting path allowing largest increase in flow

 Finding such a path is similar to solving weighted shortest path 
problem

 O(|E|) calls to O(|E| log |V|) Dijkstra’s algorithm

 Running time O(|E|2 log |V|)

 Always choose the augmenting path with the fewest edges 
(unweighted shortest path)

 At most O(|E| x |V|) augmenting steps, each costing O(|E|) for call 
to BFS

 Running time O(|E|2 |V|)

Dijkstra’s weighted shortest/ 

minimum cost path problem

Maximum Network

Flow Problem



Network Flow Problems

 Variants
 Multiple sources and sinks

 Create super-source with infinite-capacity links to each source

 Create super-sink with infinite-capacity links to each sink

 Min-cost flow problem

 Each edge has not only a capacity but also a cost per unit of flow

 Find maximum flow with minimum cost

 No known fast algorithm



Summary

 Network flow is an important algorithm with 
numerous practical applications

 Running time depends on method for finding 
augmenting path

 BFS:  O(|E|2 |V|)

 Dijkstra’s algorithm:  O(|E|2 log |V|)


