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Topics

 Proof techniques

 Proof by induction

 Proof by counterexample

 Proof by contradiction

 Recursion

 Summary



Proof Techniques

 What do we want to prove?

 Properties of a data structure always hold 
for all operations

 Algorithm running time/memory usage will 
never exceed some limit

 Algorithm will always be correct

 Algorithm will always terminate



Proof by Induction

 Goal: Prove some hypothesis is true

 Three-step process

 Prove the Base case: 
 Show hypothesis is true for some initial conditions 

 This step is almost always trivial

 Inductive hypothesis: Assume hypothesis is 
true for all values ≤ k

 Using the inductive hypothesis, show that 
the theorem is true for the next value, 
typically k + 1



Induction Example

 Prove arithmetic series

 (Step 1) Base case: Show true for N=1
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Induction Example (cont’d)

 (Step 2) Assume true for N=k

 (Step 3) Show true for N=k+1
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More Induction Examples

 Prove the geometric series

 Prove that the number of nodes N in a complete 
binary tree of depth D is   2D+1 -1

 Prove  that
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Proof by Counterexample

 Prove hypothesis is not true by giving an example 
that doesn’t work

 Example: 2N > N2 ?

 Example:  Prove or disprove “all prime numbers are odd 
numbers”

 Proof by example?

 Proof by lots of examples?

 Proof by all possible examples?

 Empirical proof

 Hard when input size and contents can vary arbitrarily



Another Example

 Traveling salesman problem

 Given N cities and costs for traveling between each pair of 
cities, find the least-cost tour to visit each city exactly once

 Hypothesis

 Given a least-cost tour for N cities, the same tour will be least-
cost for (N-1) cities

 e.g., if ABCD is the least-cost tour for cities {A,B,C,D}, 
then ABC will be the least-cost tour for cities {A,B,C}
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Another Example (cont’d)

 Counterexample

 Cost (ABCD) = 40 (optimal)

 Cost (ABC) = 30

 Cost (ACB) = 20
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Proof by Contradiction

 Assume hypothesis is false

 Show this assumption leads to a contradiction (i.e., 
some known property is violated)

 Can’t use special cases or specific examples

 Therefore, hypothesis must be true



Contradiction Example

 Variant of traveling salesman problem
 Given N cities and costs for traveling between each pair of cities, find the 

least-cost path to go from city X to city Y

 Hypothesis
 A least-cost path from X to Y contains least-cost paths from X to every 

city on the path

 E.g., if XC1C2C3Y is the least-cost path from X to Y, then
 XC1C2C3 is the least-cost path from X to C3

 XC1C2 is the least-cost path from X to C2

 XC1 is the least-cost path from X to C1
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Contradiction Example (cont’d)

 Assume hypothesis is false
 i.e., Given a least-cost path P from X to Y that goes through C, there 

is a better path P’ from X to C than the one in P

 Show a contradiction
 But we could replace the subpath from X to C in P with this lesser-

cost path P’

 The path cost from C to Y is the same

 Thus we now have a better path from X to Y

 But this violates the assumption that P is the least-cost path from X 
to Y

 Therefore, the original hypothesis must be true
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More Contradiction Example

 Example:  Prove that the square root of 2 is 
irrational (a number that cannot be expressed as a 
fraction  a/b, where a and b are integers, b  0)

 Proof: will be derived in the class

 assume root of 2 is a rational number

 assume a/b is simplified to the lowest terms
 can be done with any fraction

 in order for a/b to be in its simplest terms, both a and b must 
not be even. One or both must be odd. Otherwise, you could 
simplify



Recursion

 A recursive function is defined in terms of itself

 Examples of recursive functions

 Factorial

 Fibonacci
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Factorial (n)
if n = 0
then return 1
else return (n * Factorial (n-1))



Example

 Fibonacci numbers

 F(0) = 0

 F(1) = 1

 F(2) = 1

 F(3) = 2

 F(4) = 3

 F(5) = 5  

 - - - - - - - - - -

 F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if (n ≤ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))



Basic Rules of Recursion

 Base cases
 Must always have some base cases, which can be solved 

without recursion

 Making progress
 Recursive calls must always make progress toward a 

base case

 Design rule
 Assume that all the recursive calls work

 Compound interest rule
 Never duplicate work by solving the same instance of a 

problem in separate recursive calls



Example (cont’d)

 Fibonacci (5)

 The Fibonacci numbers are the numbers in the 
following integer sequence:

 0,  1, 1,  2,  3,  5,  8,  13,  21,  34,  55,  89,  144…………

F(5)

F(4)

F(3) F(2) F(1)

F(3)

F(2)

F(2) F(1)

F(1)

F(1) F(0)

F(0)

F(0) F(1)



Summary

 Proofs by mathematical induction, counterexample 
and contradiction

 Recursion

 Tools to help us analyze the performance of our data 
structures and algorithms

 Next:

 Floors, ceilings, exponents, logarithms, series, and modular 
arithmetic



Questions
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