
IS 709/809:
Computational Methods for IS Research

Math Review: Algorithm Analysis

Nirmalya Roy

Department of Information Systems

University of Maryland Baltimore County

www.umbc.edu

Topics

 Proof techniques

 Proof by induction

 Proof by counterexample

 Proof by contradiction

 Recursion

 Summary

Proof Techniques

 What do we want to prove?

 Properties of a data structure always hold
for all operations

 Algorithm running time/memory usage will
never exceed some limit

 Algorithm will always be correct

 Algorithm will always terminate

Proof by Induction

 Goal: Prove some hypothesis is true

 Three-step process

 Prove the Base case:
 Show hypothesis is true for some initial conditions

 This step is almost always trivial

 Inductive hypothesis: Assume hypothesis is
true for all values ≤ k

 Using the inductive hypothesis, show that
the theorem is true for the next value,
typically k + 1

Induction Example

 Prove arithmetic series

 (Step 1) Base case: Show true for N=1







N

i

NN
i

1 2

)1(







1

1 2

)11(1
1

i

i

Induction Example (cont’d)

 (Step 2) Assume true for N=k

 (Step 3) Show true for N=k+1

2

)2)(1(
2

)1()1(2
2

)1(
)1(

)1(
1

1

1










 






kk

kkk

kk
k

iki
k

i

k

i

More Induction Examples

 Prove the geometric series

 Prove that the number of nodes N in a complete
binary tree of depth D is 2D+1 -1

 Prove that











N

i

N
i

A

A
A

0

1

1

1

6

)12)(1(

1

2 




NNN
i

N

i

Proof by Counterexample

 Prove hypothesis is not true by giving an example
that doesn’t work

 Example: 2N > N2 ?

 Example: Prove or disprove “all prime numbers are odd
numbers”

 Proof by example?

 Proof by lots of examples?

 Proof by all possible examples?

 Empirical proof

 Hard when input size and contents can vary arbitrarily

Another Example

 Traveling salesman problem

 Given N cities and costs for traveling between each pair of
cities, find the least-cost tour to visit each city exactly once

 Hypothesis

 Given a least-cost tour for N cities, the same tour will be least-
cost for (N-1) cities

 e.g., if ABCD is the least-cost tour for cities {A,B,C,D},
then ABC will be the least-cost tour for cities {A,B,C}

A

D C

B
20

10

10100

100

10

Another Example (cont’d)

 Counterexample

 Cost (ABCD) = 40 (optimal)

 Cost (ABC) = 30

 Cost (ACB) = 20

A

D C

B
20

10

10100

100

10

Proof by Contradiction

 Assume hypothesis is false

 Show this assumption leads to a contradiction (i.e.,
some known property is violated)

 Can’t use special cases or specific examples

 Therefore, hypothesis must be true

Contradiction Example

 Variant of traveling salesman problem
 Given N cities and costs for traveling between each pair of cities, find the

least-cost path to go from city X to city Y

 Hypothesis
 A least-cost path from X to Y contains least-cost paths from X to every

city on the path

 E.g., if XC1C2C3Y is the least-cost path from X to Y, then
 XC1C2C3 is the least-cost path from X to C3

 XC1C2 is the least-cost path from X to C2

 XC1 is the least-cost path from X to C1

A

D C

B
20

10

10100

100

100

Contradiction Example (cont’d)

 Assume hypothesis is false
 i.e., Given a least-cost path P from X to Y that goes through C, there

is a better path P’ from X to C than the one in P

 Show a contradiction
 But we could replace the subpath from X to C in P with this lesser-

cost path P’

 The path cost from C to Y is the same

 Thus we now have a better path from X to Y

 But this violates the assumption that P is the least-cost path from X
to Y

 Therefore, the original hypothesis must be true

X C

Y
P’

More Contradiction Example

 Example: Prove that the square root of 2 is
irrational (a number that cannot be expressed as a
fraction a/b, where a and b are integers, b  0)

 Proof: will be derived in the class

 assume root of 2 is a rational number

 assume a/b is simplified to the lowest terms
 can be done with any fraction

 in order for a/b to be in its simplest terms, both a and b must
not be even. One or both must be odd. Otherwise, you could
simplify

Recursion

 A recursive function is defined in terms of itself

 Examples of recursive functions

 Factorial

 Fibonacci










0 if)!1(

0 if 1
!

nnn

n
n

Factorial (n)
if n = 0
then return 1
else return (n * Factorial (n-1))

Example

 Fibonacci numbers

 F(0) = 0

 F(1) = 1

 F(2) = 1

 F(3) = 2

 F(4) = 3

 F(5) = 5

 - - - - - - - - - -

 F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if (n ≤ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

Basic Rules of Recursion

 Base cases
 Must always have some base cases, which can be solved

without recursion

 Making progress
 Recursive calls must always make progress toward a

base case

 Design rule
 Assume that all the recursive calls work

 Compound interest rule
 Never duplicate work by solving the same instance of a

problem in separate recursive calls

Example (cont’d)

 Fibonacci (5)

 The Fibonacci numbers are the numbers in the
following integer sequence:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…………

F(5)

F(4)

F(3) F(2) F(1)

F(3)

F(2)

F(2) F(1)

F(1)

F(1) F(0)

F(0)

F(0) F(1)

Summary

 Proofs by mathematical induction, counterexample
and contradiction

 Recursion

 Tools to help us analyze the performance of our data
structures and algorithms

 Next:

 Floors, ceilings, exponents, logarithms, series, and modular
arithmetic

Questions

?

