Data Communications and Networks
IS 450/IS 650 – Fall 2015

Course Logistics

Nirmalya Roy
Department of Information Systems
University of Maryland Baltimore County
Welcome to IS 450/IS 650

- **Timings:** Tuesday; 4:30pm to 7:00pm
- **Location:** Janet & Walter Sondheim 113
- **Instructor:** Nirmalya Roy

 Faculty in IS,
 MS in CSE: UT-Arlington, 2004
 PhD in CSE: UT-Arlington, 2008
 Postdoc in ECE: UT-Austin, 2010
 Faculty at Washington State University, 2013
 Research Interest: Mobile, Pervasive and Ubiquitous Computing http://mpsc.umbc.edu/

- **Office hours:** Thursday 1:30 – 3:00pm or by appointment

 Email: nroy@umbc.edu
 Office: ITE 421
Welcome to IS 450/IS 650

- Course website
 - http://mpsc.umbc.edu/is450dcn/
 - Course related information will be posted on the website
 - Please check the course website frequently

- Prerequisite:
 - MATH 215 or MATH 221

- Make up classes
 - Will be occasionally necessary due to travel
Welcome to IS 450/IS 650

■ Grading:
 o Homework/Quizzes/Class Participation: 30%
 o Hands-on Data Communications Research & Development Project 20%
 o 1 mid-term exam: 20%
 o Final exam: 30%
Course Expectations

- **Attendance**
 - You should attend class
 - Lecture notes will be made available, but they should not be considered a substitution for attending class

- **Collaboration**
 - Collaboration is good in general but do not copy from each other
Course Information

- **Course materials:**
 - **Text:**
 - **Class notes/slides**
 - **Some supplementary reading materials**
What is this course about?

- First undergraduate and graduate level course in computer networking
 - BS and MS students

- Learn principles of computer networking
- Learn protocol modeling and analysis of computer networking
- Learn practice of computer networking
- Internet architecture/protocols as case study
- Real wireless networks and devices as case studies
- Introduction to next generation networking
- Learn how to find an interesting networking research and development problem
Course Information

- At the end of the course
 - You understand variety of concepts
 - DSL, Cable, Aloha, CSMA, TDMA, Token, WiFi 802.11, ...
 - Internet, HTTP, DNS, P2P, ...
 - Sockets, Ports, ...
 - Congestion Control, Flow Control, TCP, ...
 - Routing, Basic Graphs, Djikstra’s Algorithm, IP, ...
 - Sensor Networks
 - Tackling a research & development problem
 - ...
 - Security, RSA, ...
 - Cellular Networks, Mobile Networks, Satellite Networks, ...
 - Wireless Multihop Networks (ad hoc, mesh, WLANs)
What this Course Does Not Cover?

- We will not discuss
 - Large-scale path loss, small scale fading and multipath
 - Modulation schemes; channel coding
 - Transmitter/Receiver design, signal processing, antenna design etc.

- This is a course on
 - Understanding, analyzing, and designing of protocols and algorithms in networking systems (wired Internet/Ethernet and wireless cell/WiFi)
Hands-on Data Communications Project

- Deploy, test, compare and if needed make changes to have access to real data on real devices commercially available in the market
 - Energy Education through Green Building
 - Constellation Energy
 - Smart Plugs
 - Enmetric, D-Link Wi-Fi Smart Plugs
 - Z-Wave, Belkin Wemo Insight Switch
 - iMeterSolo
 - SiteSage (previously was known as eMonitor)
 - Other devices:
 - Fitbit, iBeacon, Myo Armband, PIR Sensor, Nest Thermostat
Hands-on Data Communications Project

- Understand the working principle and pros & cons of different types of communication protocols
 - Wi-Fi (IEEE 802.11.x)
 - ZigBee (IEEE 802.15.4)
 - Bluetooth
 - X10
 - ANT
 - Bluetooth low energy (BLE) or Bluetooth Smart
 - Powerline communication protocol (PLC)
 -
Hands-on Data Communications Project

- **Device selection**
 - Form a team (3 for undergrad and 2 for grad students)
 - Decide a team leader
 - Choose a device related to your tentative R&D project
 - Choose the most cost effective device
 - Our plan is to deploy the system ultimately at large scale in smart environments

- Email me the device specification with a purchase link, the tentative title of your project and research objective
 - Deadline for selecting the appropriate device is by the last class in September, 9/29
Selecting the Appropriate Device

- Select a device which is ubiquitous, easy to set up, easy to use and most importantly less expensive and has huge potential for the real deployment.

- Discuss with me during office hours or through emails.

- Let’s look at some potential choices.
Potential Devices & Equipment

- Energy metering and communication
 - Z-Wave Smart Energy Power Strip
 - iMeter Solo - INSTEON Power Meter (quite a few in the lab)
 - PowerLinc Modem - INSTEON USB Interface

- Z-wave Smart Metering and Communication
 - Aeon Labs DSA02203-ZWUS Z-Stick Series 2
 - Aeon Labs DSC24-ZWUS Smart Switch Z-Wave Appliance Module
 - Aeon Labs DSC06106-ZWUS - Z-wave Smart Energy Switch
 - Aeon Labs Aeotec Z-Wave Smart Energy Power Strip
Potential Devices & Equipment

- **Insteon Energy Metering and Communication**
 - iMeter Solo - INSTEON Power Meter (Plug-In)
 - PowerLinc Modem - INSTEON USB Interface (Dual-Band)

- **Enmetric System for Intelligent Plug load Management and Power Telemetry Communication**
 - Enmetric PowerPort
 - Enmetric Wireless Bridge
Potential Devices & Equipment

- PeoplePower
 - Presence Pro Energy - for Android

- Nest Lab
 - Nest Thermostat

- Wattics: Innovative Energy Management

- Tendril: Changing the way the world uses energy
Potential Devices & Equipment

- EnergyHub: Powers positive relationships with millions of energy users every day

- Baltimore Energy Challenge

 https://baltimoreenergychallenge.org/
Hands-on Data Communications Project

- Projects consist of 3 parts:
 - Choosing an interesting low-cost device
 - Identifying what you can do
 - Install the required SDK to make it work
 - Think about a novel application
 - Collect DATA for a period of at least 2-3 weeks or more
 - Based on the data build a dashboard or propose a novel application
 - Results
 - Identify the different communication protocols
 - Test with different settings based on the range, distance, interference, environment, user body positions etc.
 - Draw the important inferences or conclusions from the results
 - Is it good for what it’s meant for?
 - How does it make the environment more smarter, healthy and sustainable?
Hands-on Data Communications Project

- Mid semester progress update in mid October
- Final demonstration to the class and report submission in December
 - 3-page report (undergrad team)
 - 6-page report (grad team)
- Energy related projects and Course best project may get a chance to present their projects to Constellation Energy Inc.
- Bonus points will be given to the Best 3 projects in the class (up to 3 points)
Other Assignments

- Homework, Quizzes will be given appropriately as we make progress

- Attending class and participation in class discussion will be equivalent to the credit of an assignment
Data Communications and Networks

- Past
- Present
- Future
Internet History

1961-1972: Early packet-switching principles

- **1961**: Kleinrock - queueing theory shows effectiveness of packet-switching
- **1964**: Baran - packet-switching in military nets
- **1967**: ARPAnet conceived by Advanced Research Projects Agency
- **1969**: first ARPAnet node operational

- **1972**:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes
Internet History

1972-1980: Internetworking, new and proprietary nets

- **1970**: ALOHAnet satellite network in Hawaii
- **1974**: Cerf and Kahn - architecture for interconnecting networks
- **1976**: Ethernet at Xerox PARC
- **Late 70’s**: Proprietary architectures: DEcnet, SNA, XNA
- **Late 70’s**: Switching fixed length packets (ATM precursor)
- **1979**: ARPAnet has 200 nodes

Cerf and Kahn’s internetworking principles:
- minimalism, autonomy - no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

Define today’s Internet architecture
Internet History

1980-1990: new protocols, a proliferation of networks

- **1983**: deployment of TCP/IP
- **1982**: smtp e-mail protocol defined
- **1983**: DNS defined for name-to-IP-address translation
- **1985**: ftp protocol defined
- **1988**: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks
Internet History

1990, 2000’s: commercialization, the Web, new apps

- **Early 1990’s**: ARPAnet decommissioned
- **1991**: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- **early 1990s**: Web
 - hypertext [Bush 1945, Nelson 1960’s]
 - 1989: HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990’s: commercialization of the Web

Late 1990’s – 2000’s:
- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps
The New Millennium: “Cool” Internet Applications

IP picture frame
http://www.ceiva.com/

Internet phones

World’s smallest web server
http://www-ccs.cs.umass.edu/~shri/iPic.html

Web-enabled toaster + weather forecaster
Network Edge

- End points need not be devices

- Imagine locations as end points, and associated with email addresses in the future …
 - You could email your grocery list to aisle 3 in Safeway
 - I could email “running late” to whiteboard in the class
InterNetwork

- Millions of end points (you, me, and toasters) are connected over a network
 - Many end points can be addressed by numbers
 - Many others lie behind a virtual end point

- Many networks form a bigger network

- The overall structure called the Internet
 - Defined as *the network of networks*
Internet Structure: Network of Networks

- roughly hierarchical
- at center: “tier-1” ISPs (e.g., MCI, Sprint, AT&T, Cable and Wireless), national/international coverage
 - treat each other as equals
Internet Structure: Network of Networks

- “Tier-2” ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs
- France telecome, Tiscali, etc. buys from Sprint

Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet

Tier-2 ISPs also peer privately with each other, interconnect at NAP
Internet structure: Network of Networks

- "Tier-3" ISPs and local ISPs (Time Warner, Earthlink, etc.)
 - last hop ("access") network (closest to end systems)

Local and tier-3 ISPs are customers of higher tier ISPs connecting them to rest of Internet
Internet Structure: Network of Networks

- A packet passes through many networks!
 - Local ISP (taxi) -> T3 (bus) -> T2 (domestic) -> T1 (international)
Organizing the giant structure

Networks are complex!

- many “pieces”:
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:
Is there any hope of organizing structure of network?

Or at least our discussion of networks?
Turn to Analogies in Air Travel

- ticket (purchase)
- baggage (check)
- gates (load)
- runway takeoff
- airplane routing

- ticket (complain)
- baggage (claim)
- gates (unload)
- runway landing
- airplane routing

- a series of steps
Layering of Airline Functionality

<table>
<thead>
<tr>
<th>Layer</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>ticket (purchase)</td>
<td>ticket</td>
</tr>
<tr>
<td>baggage (check)</td>
<td>baggage</td>
</tr>
<tr>
<td>gates (load)</td>
<td>gate</td>
</tr>
<tr>
<td>runway (takeoff)</td>
<td>takeoff/landing</td>
</tr>
<tr>
<td>airplane routing</td>
<td>airplane routing</td>
</tr>
</tbody>
</table>

Layers: each layer implements a service
- layers communicate with peer layers
- rely on services provided by layer below
Why layering?

- Explicit structure allows identification, relationship of complex system’s pieces

- Modularization eases maintenance, updating of system
 - change of implementation of layer’s service transparent to rest of system
 - e.g., runway delay (wheels up time) depends on clearance of destination runway ... doesn’t affect rest of system
Protocol “Layers”

- Service of each layer encapsulated
- Universally agreed services called PROTOCOLS
- A large part of this course will focus on designing and analyzing protocols for networking systems
Internet protocol stack

- **application**: supporting network applications
 - FTP, SMTP, HTTP, DNS ...

- **transport**: host-host data transfer
 - TCP, UDP ...

- **network**: routing of datagrams from source to destination
 - IP, BGP, routing protocols ...

- **link**: data transfer between neighboring network elements
 - PPP, Ethernet, WiFi, Bluetooth ...

- **physical**: bits “on the wire”
 - OFDM, DSSS, CDMA, Coding ...
Queueing Theory

- Waiting in lines
 - In the grocery store, on the telephone, at the airport, on the road

- Queueing theory is the mathematical study of lines
 - What are the stochastic characteristics of delay?
 - For example, what is the average delay?
 - What is the probability that delay exceeds some threshold?
 - What fraction of customers are turned away?
 - What system capacity (e.g., what number of servers) is needed to achieve a specified quality of service?

- Provide decision makers a way to efficiently allocate resources to reduce delay
Applications of Queueing Theory

- Applications to Networks
- Study of the performance of systems composed of
 - Waiting lines
 - Processing units
- Allows to estimate
 - Time spent in waiting
 - Expected number of waiting requests
 - Probability of being in certain states
- Useful for the design of systems such as networks
 - Delay, blocking probability, links, bandwidth, number of processors, buffers size
Questions