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Abstract

Scientists and other domain experts often must construct elaborate programs to

carry out their analyses, even though they are not professional programmers. Moreover,

beyond simply performing computations, that have the ultimate objective of creating and

sharing knowledge, of which these workflows are an intricate part. We introduce the con-

cept of the literate workflow, which combines end-user programmability and knowledge

capture to produce unified, reusable software/knowledge artifacts. In support of this para-

digm, we enumerate five meta-design principles around which systems supporting literate

workflows can be developed. A prototype incorporating these principles is presented.



1.  Introduction

Scientists and others working in computationally-supported domains such as biol-

ogy, physics and geospatial analysis often develop software as a component of their prob-

lem-solving process. These solutions, typically referred to as scientific workflows1,

manipulate data to produce an analytical result. However, though this process results in

the creation of software programs, they are neither the principle focus of the work, nor

are those creating them generally programmers; the real goal of the work is knowledge

creation, and the domain experts performing this work can be classified as end-user

developers. With this in mind, we argue that many of the findings from research in end-

user programming can inform the development of domain-oriented environments in

which these practitioners can more effectively work.

This discussion is not to suggest that concepts from end-user programming have

not been previously applied to scientific workflows; on the contrary, the scientific and

allied problem-solving communities have often been the subject of end-user program-

ming research. Letondal and Mackay (2004) have studied bioinformaticists, the tensions

between scientific work and the need to develop software in support of it. Whitley and

Blackwell (2001) examined the efficacy of visual environments such as Labview in the

sciences. Traynor and Williams (1997) studied end-user programming in the closely-

related field of geospatial analysis, and Gantt and Nardi (1992) in their well-known paper

illuminating various roles in end-user development looked at engineers using computer-

1. While we use the terms scientific computing and scientific workflow because of their
recognition in the field, we intend this in the broadest sense, that of persons performing
computationally-assisted problem solving in data intensive applications.

2



aided design systems. Despite this history, these research communities still have limited

cross-domain recognition. For example, in the end-user development community’s

Research Agenda & Roadmap document (Paternò, Klann, & Wulf, 2003), the only men-

tion of workflow is centered around the business environment, though past work and the

need for future collaboration with the scientists as a class of end users is cited. Similarly,

outlines for future work from the scientific workflow community (Gil et al., 2006;

Deelman, 2007) make no mention of the potential contributions of end-user programming

research to the development of workflows.

This paper is organized as follows. First, we examine the user experience require-

ments as elaborated upon in the workflow literature. We then look at the corresponding

research results and direction from end-user development research. We introduce the con-

cept of the literate workflow, which advocates literate programming as a paradigm to

respond to a stated needs in scientific workflow for which there is not an adequate

approach in the existing end-user programming body of work. Drawing on empirical

findings from literate programming, end-user programming, cognitive psychology,

knowledge management and documentation research, we present five principles for the

design of literate workflow environments. Finally, we present the results of an explora-

tory case study into the efficacy literate workflows in satisfying their primary goal of

knowledge representation and transfer through a unified software/knowledge artifact.
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1.1 User-Centric Requirements in Scientific Workflow

We focus here on scientific workflows in order to differentiate them from business

workflows (Ludäscher & Goble, 2005). In particular, a scientific workflow is data-centric;

data flows though the workflow undergoing various transformations and processing that

is generally computationally intensive. Business workflows, in contrast, are control-ori-

ented, requiring authorized users to manipulate, review and approve documents passing

through the workflow at each step. Control of business workflows is often exercised

through centralized development and administration, while scientific workflows tend to

be created by individuals or small, decentralized teams of scientists.

Another attribute of the scientific workflow is its role in domain and procedural

knowledge creation and sharing leading to a need for annotation of the workflow (Chin,

Ruby Leung, Schuchardt, & Gracio, 2002; Ludäscher & Goble, 2005). In fact, we should

recognize this as the central goal of the work being performed rather than the creation of

a piece of computer software; this perspective should drive our design model for systems

supporting scientific computing.

The scientific workflow community has put forth a collection of research chal-

lenges (Gil et al., 2006). Among these are the capture and sharing of workflow descrip-

tions and data provenance; reuse and repeatability; dynamicity, user interaction in the

workflow and tailorability; intelligent assistance in creating and optimizing workflows;

and collaborative development throughout an evolutionary life cycle for workflows.

These requirements reiterate the primacy of knowledge capture and dissemination to sci-
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entific workflows, as well as being suggestive of a elements of the development paradigm

in which they are created and evolved.

1.2 Survey of Applicable End-User Programming Research

If we consider the development of scientific workflows in the context of end-user

programming (Sutcliffe & Mehandjiev, 2004), we can begin to apply the research results

from that field to the creation of scientific workflow development environments. Many of

the challenges and of objectives of the two research communities are similar. In particu-

lar, end-user programming offers guidance in three compelling areas. First, there has

been substantial work in the development of tools, often visually-oriented, for non-pro-

grammers (Burnett, 1999). Most scientific workflow environments are visual program-

ming systems and can benefit from human-computer interaction research findings. Addi-

tionally, other metaphors, including programming by demonstration (Cypher, 1993) and

natural programming (Myers, Pane, & Ko, 2004) are applicable. Recent work offers sup-

port in the area of intelligent assistance by researching methods for converting narrative

descriptions into programmatic structures (Liu & Lieberman, 2005).

Second, there is ongoing work in bringing software engineering principles to end

users, especially in the area of debugging support (Burnett, Cook, & Rothermel, 2004).

Using intelligent assistance, methods for incremental and interactive testing are offered to

the user. Much of this work centers on the prevention of errors in spreadsheets, the most

common end-user development tool, but also prone to costly errors (Panko, 1998). In sci-

entific workflow applications, this is often addressed through efforts to document data

provenance (Simmhan, Plale, & Gannon, 2005), though an expanded definition that
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includes elements of the workflow design itself is given by Greenwood, et. al. (2003).

However, there appear to be no empirical studies of the frequency or impact of errors in

scientific workflow.

Finally, we must recognize that end-user programming as a process is in many

ways different from professional programming; as previously noted, the production of

software is not the ultimate goal, but rather a means to an end. The concept of meta-

design has emerged in the end-user development research community in response to this

(Fischer, Giaccardi, Ye, Sutcliffe, & Mehandjiev, 2004). Meta-design refers broadly to

the design of environments in which the users become owners of their own problems and

designers of their own solutions. This notion extends beyond the software to the socio-

technical setting in which this occurs, shaping the relationship among users and between

professional developers and the user community, as described by the seeding, evolution-

ary growth and reseeding process (Fischer, McCall, Ostwald, Reeves, & Shipman, 1994).

With respect to workflows, the initial, scientifically-informed introduction of the compo-

nent tools and services is an example of seeding, and the development of the workflows

themselves represent evolutionary growth. Reseeding occurs when workflows are re-eng-

ineered into new components and re-introduced into the users’ toolbox. 

A principle mechanism for achieving the goals of meta-design is underdesign. In

underdesign, developers of the software environment intentionally design with the pur-

pose of allowing for flexibility to address unanticipated requirements when the system is

in use, thereby enabling the users to adapt the system to their evolving requirements. This

is a significant change to the traditional waterfall, and even iterative spiral models of
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development, and is in many ways more of design challenge for professional software

engineers. The developers of workflow environments are faced with this necessity, as

well, and use-time adaptability (often referred to as support for dynamicity and experi-

mentation) is a primary requirement in scientific workflow (Chin, Ruby Leung,

Schuchardt, & Gracio, 2002; Gil et al., 2006).

Software is not the only artifact that falls within the SER life cycle; knowledge

also evolves throughout this process, and the environment must support and encourage

the creativity inherent in this kind of work (Giaccardi, & Fischer, 2005). We argue that

the explicit representation of knowledge should be a first-class object. From the users’

perspective, knowledge is the primary product, and this is well-understood in the sci-

entific workflow community; Ludäscher and Goble remark that a workflow represents

“...know-how about a scientific method that can be shared and reused” (Ludäscher &

Goble, 2005p. 4). Deelman (2007) lists expert knowledge capture, as represented in

workflows, as the number one future research requirement. Support for creativity has also

been a research objective as it relates to workflow, and Faroq, Carroll and Ganoe (2005)

enumerate requirements for doing this effectively.

Conversely, knowledge capture is an area notably absent from the end-user devel-

opment literature is research into mechanisms for domain knowledge capture in conjunc-

tion with programming activities. As we have seen, this is the leading requirement in the

scientific community, and is likely a requirement in other areas of knowledge work. We

believe that a user-centric view of this challenge leads to re-centering the focus of end-

user development environments for this class of users to first support explicit knowledge

7



capture and secondarily (though not less effectively) support programming better aligns

the resulting platform with the needs of the user. This work proposes a paradigm for an

environment supporting end-user developed scientific workflows, and offers several

meta-design principles for instantiating such an environment. We base this approach on

the concept of literate programming.

1.3 Literate Programming

Literate programming (Knuth, 1992) represents a different way to think about

programming, changing the focus of a program from something that tells a computer

what to do to a means for humans to communicate with one another what the program

does. Knuth’s goal was to transform programs into literary works, structured to be easily

read and shared among computer scientists. This was accomplished by organizing the

program into chunks of marked-up narrative associated with the actual implementing the

program; the chunks are ordered in way natural for explaining and understanding the pro-

gram, not necessarily the compilation or execution order.

Literate programming never gained a significant foothold among computer sci-

entists, and since it was generally held to be only for the explanation of algorithms by

them rather than a practical tool for day-to-day programmers, there was also never broad

adoption among programmers. Further, limited tool support required the programmer to

effectively use two languages – one for the code and one for typesetting – and additional

markup to glue all of the parts together. 

There was limited empirical research into the efficacy of the approach over tradi-

tional programming though, for example, Bertholf and Scholtz (1993) demonstrated that
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literate programs are more comprehensible. Oman and Cook (1990) showed increased

performance in maintenance tasks for code presented in a book-like style, and Shum and

Cook (1994) compared comments in structured and literate programs, finding more

descriptive narrative in the latter, though not necessarily more text, suggesting greater

information content.

In recent years, there has been a resurgence in interest in literate programming

(Pieterse, Kourie, & Boake, 2004), partially fueled by the availability of new technolo-

gies such as integrated development environments which can naturally capture and

present a literate program without the need for additional markup. Technologies such as

extensible markup language (XML) offer a standard persistence format, and concepts

such as theme-based literate programming (Kacofegitis & Churcher, 2002) present a

mechanism for embedding multiple representations targeted to different audiences within

a single program. 

We are offered a step in the direction toward the end user for literate program-

ming in an argument made by Holmes (2003) on the need for a perspicuous approach to

programming. In this paradigm, the programmer incorporates documentation into the pro-

gram, as is done in literate programming, but rather than simply documenting the algo-

rithms, the narrative becomes a sort of user manual, explaining how to use the program.

We can easily envision a themed view in which both algorithmics and user guidance are

contained within a single object, thereby capturing the design and application knowledge

in an executable, reusable artifact. If we now place the end user in the role of author and

assembler of all of these elements, we arrive at a model for end-user development in
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which both the knowledge capture and programming objectives are achieved, a concept

we have previously presented (Dinmore, & Norcio, 2007) and now expand upon with

respect to the scientific workflow domain.

2. Literate Workflows

A literate workflow is a user-assembled program instantiating a procedure and

organized around a structured documentary form. This places the emphasis on the

explicit representation of knowledge to support dissemination and reusability, while

simultaneously incorporating the software components (or representative proxies of

them) in a unified artifact.

A literate workflow is composed of chunks, each of which has one or more ele-

ments. Elements are the basic building blocks assembled by the user, and chunks offer a

mechanism for grouping related elements in a meaningful way in the user domain For

example, a chunk might consist of a narrative, a software component that implements an

action, and an image showing sample results. Elements within a chunk can be assigned to

one or more themes, and would only be displayed when that theme is active.

As in literate programming, the presentation order of a literate workflow does not

have to match the execution order, however we expect that it often will because of the

intuitive relationship between the two. When used in combination with theme assign-

ments to chunks and elements, different navigation paths through the program may be

presented (Kacofegitis & Churcher, 2002). Consider a purely narrative view that is not

related to the execution order, or a tutorial view for novice users. This is enabled through
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another construct from literate programming, the use of contents, an index and cross ref-

erence system; each theme would have its own ordered subset of the master contents.

Literate workflows achieve versimilitude, or the inclusion of software and docu-

mentation in a single artifact, by combining persistent representations of each element in

a standard, serializable formate. The most obvious choice for this is XML, and several

candidate schemas already exist, for example the Business Process Execution Language

(BPEL) that has been previously examined for its ability to represent scientific workflows

(Slominski, 2007; Akram, Meredith, & Allan, 2006); it satisfies most, but not all require-

ments, though some users have implemented extensions to remedy this (Wasserman et

al., 2007). XML’s flexibility in allowing embedding of multiple schemas enables us to

create a schema for those additional elements we require to support literate workflows

and combine them with a suitable extant schema; a number of recent literate program-

ming projects have used XML, suggesting a starting point for a workflow-centric schema

(Pieterse, Kourie, & Boake, 2004; Aguiar, & David, 2005; Kacofegitis & Churcher,

2002). Additionally, we can use documentation-centric XML schemas, for example the

Darwin Information Typing Architecture (DITA) (Priestley, 2001), to add documentary

structure to the artifact.

2.1 Design Principles for Literate Workflows

With this as a foundation, we now present and discuss five meta-design principles

for literate workflow environments; these are summarized in table 1. Throughout, we will

use the Cognitive Dimensions of Notations (CDN) (Green, 1989) as a framework for dis-

cussing our design decisions. This has been used in end-user development research previ-

11



ously (Blackwell, Burnett, & Peyton-Jones, 2004) because of its focus on the user inter-

action aspects of notations as we would find in computer programs; it has been

specifically applied to visual programming environments (Green & Petre, 1996), research

that informs several of our principles.

Principle Key Points

Documentation-centric interaction • Linear, notebook presentation
• Natural interface

Chunk everything • Discrete, interwoven knowledge
• Component-based architecture

Provide multiple views • Address different audiences
• Provide for uses beyond workflow 

execution

Support reuse processes throughout • Locating, comprehending, modifying and 
sharing

• Knowledge and software reuse processes
• Component-level reuse

Offer intelligent assistance • Component selection
• Workflow composition
• Debugging

Table 1. Literate workflow meta-design principles.

2.1.1 Provide a Documentation-centric Interaction Paradigm

As a general model of interaction, we propose a visual, integrated environment

within which users create and edit narrative and embed presentation interfaces to local

and remote components that perform that workflow; this is a conceptual implementation

of the “scientist’s notebook” (Chin, Ruby Leung, Schuchardt, & Gracio, 2002), and

offers a natural (Myers, Pane, & Ko, 2004) and domain-oriented (Fischer, 1994) end-user

development environment. This model is presented in figure 1. We should be clear here
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in noting that a notebook-style view for implementing literate programming principles is

not novel and can be found in commercial products such as Mathematica (Wolfram

Research, 2007; Hu, 2004) and research tools such as MathModelica (MathCore, 2006;

Fritzson, Gunnarsson, & Jirstrand, 2002). 
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Figure 1. Notional display for a portion of a literate workflow showing narrative 
interleaved with interface proxies for component services.

From a CDN perspective, this design provides a closeness of mapping between

the problem and the instantiation of the solution. Dataflow is a natural way to think about

scientific computational problems, as is a top-down, book-style approach to documenta-

tion for scientists. The representation also lends itself to simplicity and consistency,

though consistency can only be completely judged against an actual implementation. The

interleaving of narrative and active components allows for interactive workflows, in

which the user performs decision-making based previous results; this is a stated require-

ment in scientific workflows (Gil et al., 2006). This interleaved model has also been

found to be a more effective presentation for understanding and performing a procedure

(Duggan & Payne, 2001).
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In keeping with meta-design concepts, we combine the design and use-time envi-

ronment, though themes enable us to target use-time presentations. We adopt a spread-

sheet-like execution metaphor, as has been done in other scientific workflow tools (Rygg,

Roe, & Wong, 2006). For simple, linear workflows, which seem to constitute the majority

of the requirements (Rygg, Roe, & Wong, 2006), this model enables a straightforward

data flow-oriented construction of a workflow. For more complex designs, the use of

chunking from literate programming and variables to maintain and transfer state and data

among chunks, provides for a wide range of solutions. These mechanisms also support

the visibility and juxtaposability in the CDN framework. Finally, we note here and will

expand upon below that the use of themes allows us to provide graduated steps in the pre-

sentation between the design and use-time views to accommodate a range os user needs.

Though we do not wish to overly constrain the implementation of literate work-

flow environments, there is one aspect of the design that differentiates the literate work-

flow from many other workflow and visual programming tools, and that is the linear, or

1-dimensional presentation of the program. Moat visual development tools provide a 2-

dimensional “canvas” upon which components can be arranged and interconnected. With

our focus on a narrative, book-like flow, a linear presentation is more appropriate; this

style has also been adopted by other tools recently, including Automator (Apple, 2005),

part of Apple Inc.’s Mac OS X, and the Automator-inspired Marmite web programming

research project (Wong, & Hong, 2006).

A linear presentation also addresses a potential conceptual problem found in 2-

dimensional presentations, namely that of secondary notations. Petre (1995) describes
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how experts in a domain may make use of the physical arrangement, color and other dis-

play attributes of objects on the canvas to convey knowledge, and that novices have diffi-

culty in both producing and interpreting this kind of secondary notation. Green and Petre

(1992), in examining visual programming environments, find that secondary notation and

“viscosity” are two considerations designers of visual environments must understand.

Viscosity, which is resistance to making changes in a program, is increased in a visual

environment unless, as they note, “a good diagram editor is used” (Green & Petre, 1992,

p. 157). This is because the myriad connections to other components must be re-estab-

lished if an insertion is made, and this may also require physical re-arrangement of com-

ponents on the canvas. In a 1-dimensional presentation, insertion, deletion and movement

(of individual or groups of items) are the only allowed editing options, eliminating the

need for both re-linking and re-arranging. 

A 1-dimensional view offers its own challenges, for example how to visualize

parallel constructs, which are often found in scientific computing. Workflows may also

tend to become long, requiring the user to scroll about more frequently. Without being

prescriptive, potential solutions to both issues include split-views, as commonly found in

text editors, selective code or narrative elision (Cockburn & Smith, 2003) to hide seg-

ments that are not of immediate interest, and overviews and fisheye views (Cockburn,

2001).

2.1.2 Chunk Everything

Chunking (Miller, 1956) is the cognitive process of organizing information into

recognizable groupings and is fundamental to how humans process information about and
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understand the world. Green (1989) discusses chunks extensively in the exposition of the

CDNs, particularly around the dimensions of role-expressiveness, in which chunks visu-

ally indicate the part they play in the plan of the program, and in reducing the complexity

of hard mental operations through decomposition. Chunking has been a part of the literate

programming paradigm from the beginning. Each logical piece of a literate program is a

chunk and contains information such as code, variable definitions or narrative descrip-

tions. Chunking like items improves recall, and recall – or the ability to locate and com-

prehend an object – is central to reusability (Fischer, 2001). This concept has been shown

to apply to the organization of computer programs (Norcio & Kerst, 1983), and we argue

here that literate workflows, as computer programs, will benefit from chunking both in

their software and knowledge aspects.

Chunking of the elements of a literate workflow should therefore increase their

reusability within the user domain, but we can achieve additional reuse benefit by

enabling the incorporation of well-defined, professionally-developed software artifacts;

this idea is the basis for component-based software engineering.

Component-based software engineering (CBSE) is an approach in which function-

ality in a software system is encapsulated in relatively independent executable objects

with well-defined interfaces to enable them to be integrated (Ning, 1997). This allows tra-

ditional developers to plug-and-play with reusable pieces of code, but it has also been

recognized as an appropriate approach to abstracting the details of professionally-devel-

oped code for end-user developers (Mørch et al., 2004). 
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Further, they enable the kind of interaction envisioned in the meta-design para-

digm by enabling professional developers to introduce componentized seeds to the shared

design environment and for end-users to modify these, resulting in tailored and assem-

bled components that can themselves be presented as reusable components. This also

facilitates re-engineering of user-designed solutions and their reseeding to the design

environment. 

Componentization is also a recommended design practice for successful reuse in

knowledge management systems, particularly those supporting emergent knowledge

processes (EKP), such as scientific problem solving (Markus, Majchrzak, & Gasser,

2002). This is necessary because of the rapidly evolving and unpredictable nature of of

this class of problems, and fits well with the SER model.

Component-based approaches are common in scientific workflow (Gannon,

2007), but there are some important differences from typical CBSE. In workflow applica-

tions, components are arranged in time for human-scale applications, rather than assem-

bled to make a single executable. Also, components are usually distributed or are, in fact,

proxies for remote services. This means that information about state is not persisted

within the component itself, but in some other location; the workflow engine must main-

tain the references necessary to access this state information at runtime. 

2.1.3 Provide Multiple Views

As we saw in our review of the literate programming literature, themes provide a

powerful means to providing multiple views tailored to particular audiences within the
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same artifact; with chunking, they are relatively easy to implement and make use of

through the assignment of tags and, if desired, alternate presentation orders.

The user-selected level of presentation offered by themes supports the multi-level

model of tailoring (Kyng, & Mathiassen, 1997). In this model, users have access to

increasing levels of tailorability at which they can make changes to the workflow, from

customization in which the user modifies parameters, to integration, in which they add

new components to the workflow, to extension, in which they are able to wrap external

entities to provide a workflow-compatible presentation interface. In that users learn by

studying and modifying programs written by others (Mackay, 1990), these successive

levels of interaction – selectable by the user – allow gradually increased participation in

the SER process.

A literate workflow is largely intended to be a documentary form, and themes

enable us to offer a variety of types of users what they need in their documentation.

Novick and Ward (2006), in a study of what users want in documentation, identify five

key areas: navigation, appropriateness of explanations, problem-oriented organization,

presentation, and completeness and correctness. To highlight a few ways themed literate

workflows can satisfy these needs, consider the following. Navigation is supported by the

index and table of contents structures from literate programming; each theme may offer a

different view of these. A search capability, as we would expect to find in a word proces-

sor, also supports this. Themes, with selective elision, enable a user to set the level of

explanation to their needs, and the use of narrative text offers a lowest-common denom-

inator form of symbolic presentation. Themes, with alternate traversal paths, provide
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problem-oriented organization, and the interleaving of components, text and other media

delivers a rich presentation. Finally, the narrative’s almost journal paper-like form

encourages completeness.

Providing multiple views addresses the CDN concepts of visibility, premature

commitment, role expressiveness and abstraction. Views act as a filter, enabling users to

see only what they need to for their application and level of knowledge. Because the

workflow is the interface, it is possible to see what subsequent steps will be, thereby

avoiding premature commitment. As noted previously, the visibility of elements of the

workflow – enhanced by the use of multiple views – helps make clear the role of each

object. Finally, the workflow is a natural abstraction of the user’s work, and the embed-

ded components are themselves abstractions of computational processes.

2.1.4 Support Knowledge and Software Reuse Cycles Throughout

In addition to knowledge created by the experiment, the problem solving, design

and provenance information that is part of the workflow are valuable, reusable knowl-

edge, and the system should actively encourage their capture (Ludäscher & Goble, 2005).

Associating this knowledge with the software in a single artifact supports reusability. The

system itself must encourage reuse throughout the process by making reusable objects

easy to create, find and apply.

A literate workflow system must support both software and knowledge reuse, and

do so through unified knowledge/software artifacts. There are a number of models of

reuse from which we can draw insights about both processes. Basili and Rombach

(1991) summarize the reuse literature and propose a comprehensive model of reuse,
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which takes an object and activity-based view: reuse candidate objects are selected via a

reuse process to satisfy needs in the development context. Fischer, Henninger and Red-

miles (1991) presents a conceptual model for software reuse in which there are three

defined phases: creation, location and comprehension; in a cyclic environment, such as

the SER model suggests, creation can alternately be conceptualized as modification

(Fischer, 2001). We can further extend this model with separate recognition for a sharing

phase (Sumner, & Dawe, 2001). Markus (2001) identifies four stages in knowledge reuse:

capturing or documenting, packaging, distributing or disseminating and reusing, which

consists of recall and recognition. A literate workflow system must encompass all of

these aspects of reuse in intrinsically. 

Krueger (1992), in his survey of software reuse, notes four truisms: (1) reuse tech-

niques must reduce the cognitive distance between the conceptual solution and its imple-

mentation; (2) a reuse technique is only effective if it is easier to reuse an object than

develop it in the first place; (3) successful selection of a reusable object requires under-

standing what that object does; and (4) reuse is ineffective is a developer can build an

object faster than finding it.

Markus (2001) presents a typology of knowledge reuse situations, of which there

are four: (1) reuse by shared knowledge producers; (2) reuse by shared work practition-

ers; (3) reuse by expertise-seeking novices; and (4) reuse by secondary knowledge

miners. Literate workflows attempt to satisfy all four situations, though how a producer

of a workflow shapes its knowledge content will largely determine its effectiveness in

each situation, and we can make the generalization that each of these situations in order is
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better served by more explicit and complete representations, as each represents a greater

distance from the producer. However, the cost of capturing this knowledge also increases,

as does the challenge. Markus notes the increasing difficulty as we move from document-

ing for ourselves, to documenting for similar others, to finally attempting to document for

dissimilar others.

A recurring theme in the reuse literature is the need for some documentation

beyond the software to enable it to be found in context, understood and applied. This may

take the form of metadata attributes assigned to reusable objects; Basili and Rombach

(1991) enumerate a number of attributes which can characterize a reuse candidate.

Markus (2001) also recognizes the need for “repository records” in knowledge reuse, that

enable others to find stored knowledge, but notes the inherent difficulties in maintaining

these records, largely due to the cost in time and resources. Incentivizing workers may be

effective, depending on the situation and whether the benefit (even with incentives) out-

weighs the perceived cost; Grudin (1994) observed this as a key issue in the acceptance

of computer-supported cooperative work systems, of which workflow is a clear example,

though it is certainly more broadly applicable.

We hope to lower the barrier to preparing literate workflows for reuse by gather-

ing much, if not all of the reuse metadata necessary to share the workflow in a repository

from within the narrative of the workflow itself. In a well-documented workflow, the

combination of explicit text provided by the author, as well as inferences that can be

made automatically from the components used, data sources selected, and outputs pre-

sented, offer a rich context for describing the workflow. Medeiros, et. al. (2005) describe
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their work on a workflow-based geospatial analysis system that provides a common com-

ponent structure for encapsulating any kind of digital content as part of a workflow, and

leveraging Semantic Web technologies to enable reuse. In particular, richly-described

components support both component selection and workflow composition, which, as we

will see later, enables intelligent assistance in these tasks.

It is therefore clear that knowledge capture in association with the software arti-

fact is critical to successful reuse. Annotation of components and workflows enables

location and comprehension, the latter which is consistent with the CDN dimension of

role-expressiveness. We argue here that, in an end-user programming situation, the

knowledge about the software artifact and the task it represents are largely the same, and

that encouraging problem-solving knowledge reuse through appropriate mechanisms

within the literate workflow environment drives software reuse.

2.1.5 Offer Intelligent Assistance

A final design principle is to provide intelligent assistance. This capability offers

the user appropriately timed help to complete a task, while not interfering with the cre-

ative process. This can be implemented through a number of technologies and to a range

of degrees, from simple, embedded contextual help (Ellison, 2007) to a mixed-initiative

system (Hearst, Allen, Guinn, & Horvtz, 1999). There are three key stages in the devel-

opment process where this can be effective: selecting components and task automation,

solution reuse, and debugging a workflow. 

Component selection is one example in our environment of the location phase of

the software reuse process model (Fischer, Henninger, & Redmiles, 1991), though as we
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previously discussed, we are not limited to only reusing components. Intelligent assis-

tance can help in locating a needed component from a library by using cues provided by

the user, including the desired inputs and outputs and descriptions of what the user

wishes to accomplish. Henninger (1991) discusses CodeFinder, a system that makes rec-

ommendations about reusable code selection based on examples. Similar work has been

done in scientific workflow, where semantic analysis and templates to perform assisted

composition (Gil, 2007).

A step beyond this is task automation. Here, the intelligent assistant recognizes

what intermediate steps are required to complete a task and offers them as a recommen-

dation to the user. While this may involve component selection, as above, this is more

sophisticated because multiple steps are involved and some understanding of the desired

outcome is necessary. Solutions may be provided through template matching or case-

based reasoning (Leake, 1996).

Generalizing further, we can offer complete, reusable workflows to users based on

their needs. Gong, Nakamura, Yura and Go (2006) discuss a recommendation system

(BAAQ) that allows a user to ask a question, and based on indexed annotations and feed-

back from previous users, creates a ranked list of candidate solutions. This is in many

ways similar to analogical matching found in the reuse literature, e.g. Maiden & Sutcliffe,

1992; Bhansali, 1995.

The last area in which intelligent assistance can be effective is debugging support.

In end-user programming research, there has been significant work toward this objective.

Burnett, Rothermel and Cook (2004) discuss methods such as “What You See Is What
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You Test” (WYSIWYT) in which untested portions of a program under development are

visually highlighted, “Help Me Test” that intelligently generate test vectors for the user

upon their request (perhaps coupled with WYSIWYT), the use of assertions and a sur-

prise-explain-reward strategy for encouraging testing. While designed around a spread-

sheet environment, these devices are equally applicable in a literate workflow paradigm.

Active assistance in composing a workflow, as well as assistance in the debugging

process should reduce errors, and thereby decrease the propensity towards the CDN

dimension of error-proneness.

3. “Blackbox” Empirical Study

We performed in initial empirical study to validate the central claim of literate

workflows, that they improve reuse and domain knowledge transfer. This study does not

examine the individual design principles as factors, but rather treats them holistically;

clearly, future studies will have to consider the design ranges and impacts of each in

turn.

For this study, we draw on Fischer’s Location-Comprehension-Modification

Cycle for reuse (Fischer, 2001), noting that literate workflows should be both easier to

locate and easier to comprehend than their non-literate counterparts. Comprehension is

not only critical to reuse, but fundamental to knowledge transfer; measuring the relative

improvement in ability to locate and comprehend therefore demonstrates the efficacy of

the literate workflow concept.
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3.1 Methodology

We employed a between-subjects design in which each subject was assigned to a

group using either traditional workflows or a literate workflow. Each subject performed

two tasks: first, to compare the ability to locate an object, the subject was given a written

problem statement and asked to retrieve by keyword search a workflow which would best

solve the problem. Workflows were created in a traditional workflow tool (KEPLER?)

and in a literate workflow style, then indexed and made accessible through a common

search engine (LUCENE OR GOOGLE DESKTOP?).

In the second task, studying comprehension, subjects were provided with a work-

flow in either traditional (KEPLER) or literate format and asked to answer several ques-

tions about what it does.

3.2 Results

4. Discussion

5. Future Research

The study presented here is preliminary. As noted previously, each principle must

be considered, and different implementation options for each weighed. It is also unclear

whether the principles defined here are exhaustive. Finally, this study did not examine the

Modification/Creation aspect of the Location-Comprehension-Modification Cycle, or, in

the extended model, the sharing aspect. Modification can be studied in a straightforward
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manner; studies in both literate programming (CITE CODE MOD IN LP) and end-user

programming (SOMETHING ON TAILORING FROM EUD) demonstrate potential

approaches to this. Creation is more challenging to study empirically because, in a rich

environment, the possible solution space for a problem is large, leading to potentially

subjective considerations of “correctness,” especially in judging the literate aspect of the

composition. Sharing is also difficult to study in the laboratory because of the significant

impact the socio-technical environment on it, including issues of incentivization, as we

have discussed.

6. Conclusions
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