# University of Maryland Baltimore County - UMBC Phys650-Special Topics in Experimental Atmospheric Physics (Spring 2009) 

V Martins and MH Tabacniks
http://userpages.umbc.edu/~martins/PHYS650/

CLASS7 - 3/11/2009

Short reports

10:00-10:45 - Discussion of short reports and weekly activities.
10:45-11:00 - Station Manager Report (Adriana)
11:00-12:30 - Single Particle X-Ray Analysis (group a)
12:30-13:30 - Lunch
13:30-15:00 - Single Particle X-Ray Analysis (group b)

## LAST CLASS

1. Langley plot for your Sunphotometer
2. Make your own SEM image of
a) UMBC aerosol sample
b) A laboratory NaCl aerosol sample
3. Determine the size and mass distribution of 2 given aerosol images:

- Laboratory generated NaCl sample
- Ambient aerosol collected on Nuclepore filter (e.g. Smoke from Biomass Burning)


## Microscopic Measurement of Particle Size



## 2 minutes of Google

## http://www.hanford.gov/dqo/training/lognor.pdf

EPA-LogNormalSizeDistributionBCES-3.pdf
http://www.atmos.washington.edu/2008Q4/501/docum ents/501 Tuesday Handout.doc

$$
\frac{\mathrm{dN}}{\mathrm{~d} \ln (\mathrm{r})}=\frac{\mathrm{N}}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left[\ln (\mathrm{r})-\ln \left(\mathrm{r}_{\mathrm{g} 0}\right)\right]^{2}}{2 \sigma^{2}}\right\}
$$




For this I measured the diameter of the particles along their longest side and plotted the histogram as below. This histogram is for the distribution of particles in Nacl01.bmp. The graph shows that most of the particles in Nacl01.bmp are in the range 0.15 to 0.45 micrometer in diameter.

NaClO 1


Wrong
To calibrate the sun photo meter the field of view of its LED has to be determined. To find the field of view of our LED, we put our LED in front of monochromatic light source. To make the light parallel we place a convex lens between light source and our sun photometer. With the center of the light on the

wrong

Do not plot data points


From the graph it is seen that radiance corresponding to the 566 nm wave length is $72.5 \mathrm{uW} / \mathrm{cm} 2-\mathrm{sr}-\mathrm{nm}$


Thus the number of photons per second is found to be $2.064 \times 10^{14}$ (when all lamps are on)


### 1.2 Summary of NACL01.BMP

| S1ice | Count | Total <br> Area <br> $\left(\mu m^{2}\right)$ | Average <br> Size <br> $\left(\mu m^{2}\right)$ | Area <br> Fraction | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NACL01. BMP | 113 | 14.969 | 0.132 | 11.2 | 255 |

From this summary table, we can see that there are approximately 113 salt particles totally in this sample. And the average particle area is $0.132 \mu m^{2}$. But the Imagej mistakenly treats the bottom text line " $20 \mathrm{KV} x 9,500 \ldots$.." as particles. In addition, it also sees a group of overlapping particles, for example, count number 14, as one big particle rather than a few of particles. Furthermore, it couldn't tell the filter holes, in the same size magnitude of particles like the ones in the left bottom, from the particles. In a word, this is just a rough particle analysis.


## A 3 gaussian fit to the LED emission curve

a) D/roz200 15.05 NOnphtr (24540001 Data: Data 1_B

| Modet: Gavas |  |
| :--- | :--- |
| Crn2DoF | $R^{2} 2$ |
| 0.00016 | 0.90123 |


| Parameter | Vatse | Emer |
| :---: | :---: | :---: |
| yo | 0.01 | 0 |
| xct | Ses | 0 |
| w1 | 46.19069 | 4.25754 |
| A1 | 57.0926 | 5.63789 |
| $x{ }^{\text {c/2 }}$ | 551.60296 | 1.35304 |
| w2 | 2933028 | 172453 |
| A2 | 15.26261 | 2.87294 |
| $\times 3$ | 630 | 0 |
| w) | 23.51033 | 2.17487 |
| A3 | 9.01858 | 275811 |


$y=y 0+\left(A /\left(w^{*} s q r t(P l / 2)\right)\right)^{*} \exp \left(-2^{*}((x-x c) / w)^{\wedge} 2\right)$
b)


Two figures and a simple text explain in detail the FOV measurements


Figure 3: Measurement of the LED (A) without the collimator and inside the box (B)


If the LED was considered as a point, the FOV of the LED with the collimator would be equal to $2 \times \tan ^{-1}$ (radius of the hofe/ 2 x distance LED-hole) $\sim 4^{\circ}$ But the LED is in reality a finite point with a radius of -2.3 mm .

Let's call $\Omega_{\text {LED }}$, the solid angle of the LED (in sr) with $\Omega_{\text {LED }}=2 \pi(1-\cos (\theta))$.

We also need to define the "Efficient LED solid angle",
$\Omega_{L E D}^{E F f}=\int_{d \theta} F O V_{L E D}^{E F f} \times 2 \pi(1-\cos (\theta)) d \theta$
with $\mathrm{FOV}_{\mathrm{LED}}{ }^{\text {Eff }}$ as the red curve on figure 4.
After integration, we obtain:
$\Omega^{\mathrm{Eff}}{ }_{\text {LED }}=0.92 \mathrm{sr}$
Note: This value represents $\sim 1 \%$ of the whole sphere ( $4 \pi \mathrm{sr}$ )


$$
d s=r d \theta \cdot r \sin \theta d \varphi
$$

$$
\begin{aligned}
& \Omega=\iint_{r^{2}} \frac{d s}{r^{2}}=\int_{0}^{2 \pi} d \varphi \int_{0}^{\theta} d \theta \sin \theta \\
& \Omega=2 \pi \int_{0}^{\theta} d \theta \sin \theta=2 \pi[-\cos \theta]_{0}^{\theta}=2 \pi(1-\cos \theta)
\end{aligned}
$$

We also need to define the "Efficient LED solid angle",
$\Omega_{L E D}^{E F /}=\int_{d \theta} F O V_{L E D}^{E F D} \times 2 \pi(1-\cos (\theta)) d \theta$
with $\mathrm{FOV}_{\mathrm{LED}}{ }^{\mathrm{Eff}}$ as the red curve on figure 4.
After integration, we obtain:
$\Omega^{\text {Eff }}{ }_{\text {LED }}=0.92 \mathrm{sr}$
Note: This value represents $\sim 1 \%$ of the whole sphere ( $4 \pi s r$ )
) field Of View FOV ${ }_{\text {LED }}{ }^{\text {Ef }}$


$$
\left(\frac{\theta}{2}\right)_{\text {FWHM }}=\frac{3.2-(-3.5)}{2}=3.4^{0}=\frac{\pi 3.4}{180}=0.059 \mathrm{rd}
$$

$$
\Omega_{F W H M}=0.0110 s r
$$

$$
\frac{\Omega}{4 \pi}=\frac{0.0110}{4 \pi}=0.00088
$$

Finally, we define the LED cross section, $\sigma_{\text {LED }}$, as the cross section of the collimator hole of the sunphotometer with $\mathrm{r}_{\text {hole }}=2.32 \mathrm{~mm}$ :
$\sigma_{\text {LED }}=4 \pi \times \mathrm{r}_{\text {hole }}{ }^{2}$
$\Rightarrow \sigma_{\text {LED }}=0.68 \mathrm{~cm}^{2}$

## CROSS SECTION



The measurements are displayed on figure 6 below.

| Sphere |  |  | Sunphotometer |
| :---: | :---: | :---: | :---: |
| Radiance <br> $\mathbf{( 5 9 0 - 6 0 0} \mathbf{n m})$ | Volts | Lamps | Volts |
| 88.11 | 164.07 | $4:$ ITHS300-ITS150-ITHS75-ETHS150 | 1.34 |
| 1.30 | 55.27 | $3:$ ITS150-ITHS75-ETHS150 | 1.30 |
| 1.23 | 31.27 | 2: ITHS75-ETHS150 | 1.23 |
| 10.48 | 19.52 | $1:$ ETHS150 | 0.99 |
| 0.00 | 0.00 | 0 | 0.00 |



Figure 6: Calibration of the sunphotometer with the sphere by turning down the lamps once at a time
there is something wrong. We have only 2 intensity calibrations for the sphere and other plots $V \times$ radiance came out straight lines

## 5. Number of photons absorbed by the LED per seconds

Let's start with the spectral radiance calibration of the sphere, Rsphere [micro W.cm ${ }^{-2}$.sr ${ }^{1} . \mathrm{nm}^{-1}$ ] as given by the "Sphere Optics" manual (figure 7 below).


Figure 7: spectral radiance calibration of the sphere with all 4 lamps activated
Below are four steps to compute the number of photons absorbed by the sunphotometer per second:

1. Computing the LED spectral Emittance, E EED, by multiplying the spectral radiance of the sphere, $\mathrm{R}_{\text {sphere }}$ and the efficient solid angle, $\Omega_{L E D}^{E f}$ :

$$
E_{L E D}(\lambda)=R_{\text {sphere }}(\lambda) \times \Omega_{L E D}^{E F F} \quad \text { in [micro W.cm-2.nm } \quad \Omega_{F W H M}=0.0110 \mathrm{sr}
$$

2. Computing the LED spectral power, $P_{\text {LED, }}$ by multiplying E EED and the LED cross section, $\sigma_{\text {LED }}$ :

$$
P_{L E D, \lambda}=E_{L E D}(\lambda) \times \sigma_{L E D}
$$

in [micro W.nm]

$$
\sigma_{L E D}=0.12 \mathrm{~cm}^{2}
$$

3. " 1 Watt" is " 1 Joule per second" and " Joule" is the number of photons times the Energy. Finally, since the energy is hv, " 1 Watt" equals "Number of photons x hc $/ \lambda$ ".
Let's compute the Number of photons per second per wavelength, $N_{L E D, \lambda}$ :

$$
N_{L E D, \lambda}=P_{L E D, \lambda} \times \frac{\lambda}{h c} \quad \text { in }\left[\mathrm{nm} \cdot \mathrm{~s}^{-1}\right]
$$

with $\mathrm{h}=6.62606896 .10^{-34} \mathrm{~J} . \mathrm{s}^{-1}$
4. Finally, we can multiply the number of photons per second per wavelength by the normalized spectral efficiency of the LED, $\mathrm{SE}_{\text {LED }, \lambda}$ (see section 1) and integrate the product on each wavelength:

$$
\begin{equation*}
N_{L E D, \lambda}=\int_{\lambda} N_{L E D, \lambda} \times S E_{L E D, \lambda} d \lambda \tag{-1}
\end{equation*}
$$

Sphere spectral radiance calibration (All lamps, 594 W)


$$
N_{L E D, \lambda}=\int_{\lambda} N_{L E D, \lambda} \times S E_{L E D, \lambda} d \lambda \quad\left[\mathrm{~s}^{-1}\right]
$$

We must convolute the LED absorption and the sphere radiance


I used ImageJ to process this image.
I measured the tength of the scale bar at the bottom of the image in pixels and used this number to set the units in ImageJ, so from that time all the size measurements were displayed in $\mu \mathrm{m}$ by the ImageJ software.

Icropped the bottom with the tex and applied a threshold operation of 92 or higher to 0 and lower to 255 . The results was:


Then I used the command in the analyze menu to detect particles (closed edges) and this gave me a list of particles, numbered (in red in the image below) and with their locations. This is called the mask.



MXA63C

## MXA63F

Aerosol Collection Size Distribution (counted manually)

The area of an aerosol was then found by outlining it using the ImageJ program, which computed the area of the outlined aerosol. The us of a digital pen tablet expedited this process. A metric for the aerosol size was found by assuming that all of the aerosols held a sphere-like shape, The diameter of these spherical aerosols, called the aerodynamic diameter, were found from:

$$
d_{A D}=2 \frac{\sqrt{a}}{\pi}
$$

where $d_{A D}$ is the aerodynamic diameter and $a$ is the measured area of an aerosol. This



Fig. 4 Linear fit of the absorption LED in function to Sphere Optic Radiance.

## Calibration Sunphotometer-Sphere




Fig 2 - Linear fit in the calibration dataset using an integrating sphere. (Dark current correction was applied).

Coarse•Filter•Pictures: 7


Figure $\cdot 1: \cdot \mathrm{MXA}-63 \mathrm{C} \cdot \mathrm{Im}$ mage $\cdot 1$-1


Figure $\cdot 3: \mathrm{MXA}-63 \mathrm{C} \cdot \mathrm{Im}$ age $\cdot 6 \boldsymbol{\square}$


Figure $\cdot 2: \cdot \mathrm{MXA}-63 \mathrm{C} \cdot \mathrm{Im}$ mage $\cdot 2 \boldsymbol{2}$


Figure $\cdot 4: \mathrm{MXA}-63 \mathrm{C} \cdot \mathrm{Im}$ age. $4 \boldsymbol{4}$

Fine•Filter•Pictures:9


Figure $\cdot 5:-\mathrm{MXA}-63 \mathrm{~F} \cdot \mathrm{Im}$ age -19


Figure $\cdot 7: \mathrm{MXA}-63 \mathrm{~F} \cdot \mathrm{Im}$ age $\cdot 19$

