# MATH 221, Spring 2018 - Homework 8 Solutions 

Due Tuesday, April 17

## Section 4.4

Page 222, Problem 3:
Let $\mathcal{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]$. Then, $\mathbf{x}=1 \mathbf{b}_{1}+0 \mathbf{b}_{2}+-2 \mathbf{b}_{3}=1\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]+0\left[\begin{array}{c}5 \\ 0 \\ -2\end{array}\right]+-2\left[\begin{array}{c}4 \\ -3 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]+\left[\begin{array}{c}-8 \\ 6 \\ 0\end{array}\right]=\left[\begin{array}{c}-7 \\ 4 \\ 3\end{array}\right]$.
Page 222, Problem 7:
In this problem, we are solving the equation $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ for the coordinates $c_{1}, c_{2}$, and $c_{3}$. In this problem, this equation is represented by $\left[\begin{array}{c}8 \\ -9 \\ 6\end{array}\right]=c_{1}\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]+c_{2}\left[\begin{array}{c}-3 \\ 4 \\ 9\end{array}\right]+c_{3}\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$, which amounts to solving the augmented system $\left[\begin{array}{cccc}1 & -3 & 2 & 8 \\ -1 & 4 & -2 & -9 \\ -3 & 9 & 4 & 6\end{array}\right]$. Row-reducing yields $\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$.

So, $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right]$.
Page 223, Problem 10:
As stated in this section (on page 219), the matrix $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$ is the change-of-coordinates matrix from $\mathcal{B}$ to the standard basis in $\mathbb{R}^{\mathrm{n}}$. Therefore, $P_{\mathcal{B}}=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 2 & -2 \\ 6 & -4 & 3\end{array}\right]$.

Page 223, Problem 14:
Any polynomial $a+b t+c t^{2}$ in $\mathbb{P}_{2}$ can be written in vector form as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Therefore, the set $\mathcal{B}$ as a set of vectors is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$ and the vector $\mathbf{p}$ is $\mathbf{p}=\left[\begin{array}{c}1 \\ 3 \\ -6\end{array}\right]$. Solve the augmented system $\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \\ -1 & -1 & 1 & -6\end{array}\right]$.
The solution in reduced-echelon form is $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1\end{array}\right]$, so $[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$.

Let $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}\end{array}\right]$ (which is an $n \times n$ matrix because its columns form a basis for $\mathbb{R}^{\mathrm{n}}$ ). By definition, $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ which is a transformation of $[\mathbf{x}]_{\mathcal{B}}$ to $\mathbf{x}$. Because the columns of $P_{\mathcal{B}}$ are linearly independent (they form a basis for $\mathbb{R}^{\mathrm{n}}$ ), $P_{\mathcal{B}}$ is invertible. Thus, left-side multiplication of $P_{\mathcal{B}}^{-1}$ results in $P_{\mathcal{B}}^{-1} \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$, which is a transformation of $\mathbf{x}$ to $[\mathbf{x}]_{\mathcal{B}}$ $\left(\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}\right)$. Therefore, take $A=P_{\mathcal{B}}^{-1}$.

Page 222, Problem 26:
Assume $\mathbf{w}$ is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$. Then, there exist scalars $c_{1}, \ldots, c_{p}$ so that $\mathbf{w}=c_{1} \mathbf{u}_{1}+\ldots+c_{p} \mathbf{u}_{p}$. Since the coordiante mapping $[\mathbf{w}]_{\mathcal{B}}$ is a linear transformation (Theorem 8), it follows that $[\mathbf{w}]_{\mathcal{B}}=c_{1}\left[\mathbf{u}_{1}\right]_{\mathcal{B}}+\ldots+c_{p}\left[\mathbf{u}_{p}\right]_{\mathcal{B}}$. So, $[\mathbf{w}]_{\mathcal{B}}$ must be a linear combination of $\left[\mathbf{u}_{1}\right]_{\mathcal{B}}, \ldots,\left[\mathbf{u}_{p}\right]_{\mathcal{B}}$. Since the transformation is one-to-one, the converse must be true.

## Section 4.5

Page 229, Problem 3:
Any vector in the subspace can be written as $a\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]+b\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 2\end{array}\right]+c\left[\begin{array}{c}2 \\ 0 \\ -3 \\ 0\end{array}\right]$. Thus, $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -3 \\ 0\end{array}\right]\right\}$
spans the subspace. To determine if this set is linearly independent, solve the matrix equation $\left[\begin{array}{ccc}0 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 2 & 0\end{array}\right] \mathbf{x}=\mathbf{0}$.
The matrix reduces to $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Thus, the only solution is the trivial solution, so the columns are linearly
independent. Therefore, a basis for the subspace is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -3 \\ 0\end{array}\right]\right\}$. Because there are three vectors
in the basis, the dimension of the subspace is 3 .

Page 229, Problem 8:
The equation can be rewritten as $a=3 b-c$. Thus, any vector $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ in the subspace can be written as
$b\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]+c\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+d\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. Thus, the set $S=\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ spans the subspace. It is clear that the
set is linearly independent, but to verify that, reduce the matrix formed by the column vectors
$A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, which shows the only solution to $A \mathbf{x}=\mathbf{0}$ is the trivial solution, so the columns
are linearly independent. Thus, $S$ is a basis with dimension 3 .

Page 229, Problem 10:
Given $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 10\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 15\end{array}\right]$. It is clear that the set of these vectors is linearly dependent because $\mathbf{v}_{2}=-2 \mathbf{v}_{1}$ and $\mathbf{v}_{3}=-3 \mathbf{v}_{1}$. By the Spanning Set Theorem, the set $\left\{\mathbf{v}_{1}\right\}$ still spans $\mathbb{R}^{2}$ and because the set is linearly independent, it is also a basis for $\mathbb{R}^{2}$, so the dimension is 1 .

Page 229, Problem 14:
Because there are three free variables, the dimension of $\operatorname{Nul} A$ is 3 and because there are four pivot positions, the dimension of $\operatorname{Col} A$ is 4 .

Page 229, Problem 15:
Because there are two free variables, the dimension of $\operatorname{Nul} A$ is 2 and because there are three pivot positions, the dimension of $\operatorname{Col} A$ is 3 .

Page 229, Problem 17:
Because there are no free variables, the dimension of $\operatorname{Nul} A$ is 0 and because there are three pivot positions, the dimension of $\operatorname{Col} A$ is 3 .

Page 229, Problem 19a:

True or False: The number of pivot columns of a matrix equals the dimension of its column space.
TRUE: This is stated in the box on page 228 before Example 5.
Page 229, Problem 19d:

True or False: If $\operatorname{dim} V=n$ and $S$ is a linearly independent set in $V$, then $S$ is a basis for $V$.
FALSE: The set must have exactly $n$ vectors to be a basis for $V$.
Page 229, Problem 20d:

True or False: If $\operatorname{dim} V=n$ and if $S$ spans $V$, then $S$ is a basis for $V$.

FALSE: The set must have exactly $n$ vectors to be a basis for $V$.

## Section 4.6

Page 236, Problem 2:

Because $\operatorname{rank} A=\operatorname{dim}(\operatorname{Col} A)$, and since there are 3 pivot positions, $\operatorname{rank} A=3$. Because $A$ is a $4 \times 5$ matrix,
$\operatorname{dim}(\operatorname{Nul} A)+\operatorname{rank} A=5$. Thus, $\operatorname{dim}(\operatorname{Nul} A)=5-3=2$. The basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 6 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ -3 \\ 0\end{array}\right]\right\}$ and the basis for Row $A$ is the set of non-zero rows of $B:\left\{\left[\begin{array}{c}1 \\ 3 \\ 4 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ -5\end{array}\right]\right\}$. To find the basis for Nul $A$,
reduce the matrix $B$ to reduced-echelon form to find the solutions to the trivial equation:
$\left[\begin{array}{ccccc}1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 3 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, so $\mathbf{x}=x_{2}\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]$. So the basis for
$\mathrm{Nul} A$ is: $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
Page 236, Problem 3:
For the same reasons problem $4, \operatorname{rank} A=3$ and $\operatorname{dim}(\operatorname{Nul} A)=3$. The basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{c}2 \\ -2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{c}6 \\ -3 \\ 9 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 3 \\ 3\end{array}\right]\right\}$ and the basis for Row $A$ is $\left\{\left[\begin{array}{c}2 \\ 6 \\ -6 \\ 6 \\ 3 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 3 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 0\end{array}\right]\right\}$. Reducing $B$ results in $\left[\begin{array}{cccccc}2 & 6 & -6 & 6 & 3 & 6 \\ 0 & 3 & 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & -3 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$, which implies $\mathbf{x}=x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{6}\left[\begin{array}{c}-3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$. So, the basis for $\operatorname{Nul} A$ is $\left\{\left[\begin{array}{l}3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.

Because $A$ is a $4 \times 7$ matrix, $\operatorname{Col} A$ must be a subspace of $\mathbb{R}^{4}$. Since there are 4 pivot positions, it must be that $\operatorname{Col} A=\mathbb{R}^{4}$. $\operatorname{Nul} A$ must be a three-dimensional subspace of $\mathbb{R}^{7}$ (the vectors in $\operatorname{Nul} A$ have 7 entries). Therefore, $\operatorname{Nul} A \neq \mathbb{R}^{3}$.

Page 237, Problem 8:
Because there are four pivot columns, $\operatorname{dim}(\operatorname{Col} A)=4$, so $\operatorname{dim}(\operatorname{Nul} A)=8-4=4$. It is impossible for $\operatorname{Col} A=\mathbb{R}^{4}$
because $\operatorname{Col} A$ is a subspace of $\mathbb{R}^{6}$ (the vectors in $\operatorname{Col} A$ have 6 entries).
Page 237, Problem 9:

Because $\operatorname{dim}(\operatorname{Nul} A)=3$ and $n=6, \operatorname{dim}(\operatorname{Col} A)=6-3=3$. It is impossible for $\operatorname{Col} A=\mathbb{R}^{3}$ because $\operatorname{Col} A$ is a subspace of $\mathbb{R}^{4}$ (the vectors in $\operatorname{Col} A$ have 4 entries).

Page 237, Problem 11:
Because $\operatorname{dim}(\operatorname{Nul} A)=3$ and $n=5, \operatorname{dim}(\operatorname{Row} A)=\operatorname{dim}(\operatorname{Col} A)=5-3=2$.
Page 237, Problem 18a:

True or False: If $B$ is any echelon form of $A$, then the pivot columns of $B$ form a basis for the column space of $A$.
FALSE: As before, the pivot columns in $B$ tell which columns of $A$ form a basis for the column space of $A$.

Page 237, Problem 18c:

True or False: The dimension of the null space of $A$ is the number of columns of $A$ that are not pivot columns.
TRUE: Because the number of columns of A that are pivot columns equals the rank of $A$, by the Rank Theorem, the number of columns of $A$ that are not pivot columns must be the dimension of the null space of $A$ (see the proof of the Rank Theorem on page 233).

Page 238, Problem 31:
Compute $A=\mathbf{u v}^{T}=\left[\begin{array}{c}2 \\ -3 \\ 5\end{array}\right]\left[\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{ccc}2 a & 2 b & 2 c \\ -3 a & -3 b & -3 c \\ 5 a & 5 b & 5 c\end{array}\right]$. Each column of this matrix is a multiple of $\mathbf{u}$, so
$\operatorname{dim}(\operatorname{Col} A)=1$, unless $a=b=c=0$, in which case $\operatorname{dim}(\operatorname{Col} A)=0$. Because $\operatorname{dim}(\operatorname{Col} A)=\operatorname{rank} A, \operatorname{rankuv}^{\mathrm{T}}=\operatorname{rank} A \leq 1$.

Page 238, Problem 32:
Notice that the second row of the matrix is twice the first. Therefore, take $\mathbf{v}=\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right]$, so that
$\mathbf{u v}^{T}=\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & -3 & 4\end{array}\right]=\left[\begin{array}{lll}1 & -3 & 4 \\ 2 & -6 & 8\end{array}\right]$.

