MATH 221, Spring 2018 - Homework 8 Solutions

Due Tuesday, April 17

Section 4.4

Page 222, Problem 3:

Let
$$\mathcal{B} = [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$$
. Then, $\mathbf{x} = 1\mathbf{b}_1 + 0\mathbf{b}_2 + -2\mathbf{b}_3 = 1\begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix} + 0\begin{bmatrix} 5\\ 0\\ -2 \end{bmatrix} + -2\begin{bmatrix} 4\\ -3\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix} + \begin{bmatrix} -8\\ 6\\ 0 \end{bmatrix} = \begin{bmatrix} -7\\ 4\\ 3 \end{bmatrix}$

Page 222, Problem 7:

In this problem, we are solving the equation $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + c_3 \mathbf{b}_3 = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$ for the coordinates $c_1, c_2, \text{ and } c_3$. In this problem, this equation is represented by $\begin{bmatrix} 8 \\ -9 \\ 6 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ 4 \\ 9 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$, which amounts to solving the augmented system $\begin{bmatrix} 1 & -3 & 2 & 8 \\ -1 & 4 & -2 & -9 \\ -3 & 9 & 4 & 6 \end{bmatrix}$. Row-reducing yields $\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$.

So,
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -1\\ -1\\ 3 \end{bmatrix}$$
.

Page 223, Problem 10:

As stated in this section (on page 219), the matrix $P_{\mathcal{B}} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$ is the change-of-coordinates matrix from \mathcal{B} to

the standard basis in
$$\mathbb{R}^n$$
. Therefore, $P_{\mathcal{B}} = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2 & -2 \\ 6 & -4 & 3 \end{bmatrix}$

Page 223, Problem 14:

Any polynomial $a + bt + ct^2$ in \mathbb{P}_2 can be written in vector form as $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Therefore, the set \mathcal{B} as a set of vectors is

$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \right\} \text{ and the vector } \mathbf{p} \text{ is } \mathbf{p} = \begin{bmatrix} 1\\3\\-6 \end{bmatrix}. \text{ Solve the augmented system } \begin{bmatrix} 1 & 0 & 2 & 1\\0 & 1 & -1 & 3\\-1 & -1 & 1 & -6 \end{bmatrix}.$$

The solution in reduced-echelon form is $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$, so $[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$.

Let $P_{\mathcal{B}} = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix}$ (which is an $n \times n$ matrix because its columns form a basis for \mathbb{R}^n). By definition, $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ which is a transformation of $[\mathbf{x}]_{\mathcal{B}}$ to \mathbf{x} . Because the columns of $P_{\mathcal{B}}$ are linearly independent (they form a basis for \mathbb{R}^n), $P_{\mathcal{B}}$ is invertible. Thus, left-side multiplication of $P_{\mathcal{B}}^{-1}$ results in $P_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$, which is a transformation of \mathbf{x} to $[\mathbf{x}]_{\mathcal{B}}$ $(\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}})$. Therefore, take $A = P_{\mathcal{B}}^{-1}$.

Page 222, Problem 26:

Assume \mathbf{w} is a linear combination of $\mathbf{u}_1, ..., \mathbf{u}_p$. Then, there exist scalars $c_1, ..., c_p$ so that $\mathbf{w} = c_1 \mathbf{u}_1 + ... + c_p \mathbf{u}_p$. Since the coordiante mapping $[\mathbf{w}]_{\mathcal{B}}$ is a linear transformation (Theorem 8), it follows that $[\mathbf{w}]_{\mathcal{B}} = c_1 [\mathbf{u}_1]_{\mathcal{B}} + ... + c_p [\mathbf{u}_p]_{\mathcal{B}}$. So, $[\mathbf{w}]_{\mathcal{B}}$ must be a linear combination of $[\mathbf{u}_1]_{\mathcal{B}}, ..., [\mathbf{u}_p]_{\mathcal{B}}$. Since the transformation is one-to-one, the converse must be true.

Section 4.5

Page 229, Problem 3:

Any vector in the subspace can be written as
$$a \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} + b \begin{bmatrix} 0\\-1\\1\\2 \end{bmatrix} + c \begin{bmatrix} 2\\0\\-3\\0 \end{bmatrix}$$
. Thus, $\left\{ \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\-3\\0 \end{bmatrix} \right\}$
spans the subspace. To determine if this set is linearly independent, solve the matrix equation $\begin{bmatrix} 0 & 0 & 2\\1 & -1 & 0\\0 & 1 & -3\\1 & 2 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0}$.

The matrix reduces to $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Thus, the only solution is the trivial solution, so the columns are linearly

independent. Therefore, a basis for the subspace is
$$\left\{ \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\-3\\0 \end{bmatrix} \right\}$$
. Because there are three vectors

in the basis, the dimension of the subspace is 3.

Page 229, Problem 8:

The equation can be rewritten as
$$a = 3b - c$$
. Thus, any vector $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ in the subspace can be written as
 $b \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Thus, the set $S = \left\{ \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ spans the subspace. It is clear that the

set is linearly independent, but to verify that, reduce the matrix formed by the column vectors

 $A = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$ which shows the only solution to $A\mathbf{x} = \mathbf{0}$ is the trivial solution, so the columns

are linearly independent. Thus, S is a basis with dimension 3.

Page 229, Problem 10:

Given $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 10 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 15 \end{bmatrix}$. It is clear that the set of these vectors is linearly dependent because $\mathbf{v}_2 = -2\mathbf{v}_1$ and $\mathbf{v}_3 = -3\mathbf{v}_1$. By the Spanning Set Theorem, the set $\{\mathbf{v}_1\}$ still spans \mathbb{R}^2 and because the set is linearly independent, it is also a basis for \mathbb{R}^2 , so the dimension is 1.

Page 229, Problem 14:

Because there are three free variables, the dimension of NulA is 3 and because there are four pivot positions, the dimension

of ColA is 4.

Page 229, Problem 15:

Because there are two free variables, the dimension of NulA is 2 and because there are three pivot positions, the dimension

of ColA is 3.

Page 229, Problem 17:

Because there are no free variables, the dimension of NulA is 0 and because there are three pivot positions, the dimension

of ColA is 3.

Page 229, Problem 19a:

True or False: The number of pivot columns of a matrix equals the dimension of its column space.

TRUE: This is stated in the box on page 228 before Example 5.

Page 229, Problem 19d:

True or False: If dim V = n and S is a linearly independent set in V, then S is a basis for V.

FALSE: The set must have exactly n vectors to be a basis for V.

Page 229, Problem 20d:

True or False: If dim V = n and if S spans V, then S is a basis for V.

FALSE: The set must have exactly n vectors to be a basis for V.

Section 4.6

Page 236, Problem 2:

Because rank $A = \dim(\text{Col}A)$, and since there are 3 pivot positions, rankA = 3. Because A is a 4×5 matrix,

 $\dim(\operatorname{Nul}A) + \operatorname{rank}A = 5. \text{ Thus, } \dim(\operatorname{Nul}A) = 5 - 3 = 2. \text{ The basis for } \operatorname{Col}A \text{ is } \left\{ \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} 4\\6\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\-3\\0 \end{bmatrix} \right\} \text{ and the}$

basis for RowA is the set of non-zero rows of B: $\begin{cases} 3 \\ 4 \\ - \end{cases}$

$$\begin{bmatrix} 1 \\ 3 \\ 4 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -5 \end{bmatrix} \right\}.$$
 To find the basis for NulA,

reduce the matrix B to reduced-echelon form to find the solutions to the trivial equation:

$$\begin{bmatrix} 1 & 3 & 4 & -1 & 2\\ 0 & 0 & 1 & -1 & 1\\ 0 & 0 & 0 & 0 & -5\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 3 & 0\\ 0 & 0 & 1 & -1 & 0\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \text{ so } \mathbf{x} = x_2 \begin{bmatrix} -3\\ 1\\ 0\\ 0\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3\\ 0\\ 1\\ 1\\ 0 \end{bmatrix}. \text{ So the basis for}$$

NulA is:
$$\left\{ \begin{bmatrix} -3\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} -3\\ 0\\ 1\\ 1\\ 0 \end{bmatrix} \right\}.$$

Page 236, Problem 3:

For the same reasons problem 4, rank A = 3 and dim(NulA) = 3. The basis for ColA is $\begin{cases} \begin{vmatrix} 2 \\ -2 \\ 4 \\ -2 \end{vmatrix}$, $\begin{vmatrix} 6 \\ -3 \\ 9 \\ 3 \end{vmatrix}$, $\begin{vmatrix} 5 \\ 0 \\ 3 \\ 3 \end{vmatrix} \end{cases}$

Because A is a 4×7 matrix, ColA must be a subspace of \mathbb{R}^4 . Since there are 4 pivot positions, it must be that ColA = \mathbb{R}^4 .

NulA must be a three-dimensional subspace of \mathbb{R}^7 (the vectors in NulA have 7 entries). Therefore, Nul $A \neq \mathbb{R}^3$.

Page 237, Problem 8:

Because there are four pivot columns, dim(ColA) = 4, so dim(NulA) = 8 - 4 = 4. It is impossible for ColA = \mathbb{R}^4 because ColA is a subspace of \mathbb{R}^6 (the vectors in ColA have 6 entries).

Page 237, Problem 9:

Because dim(NulA) = 3 and n = 6, dim(ColA) = 6 - 3 = 3. It is impossible for ColA = \mathbb{R}^3 because ColA is a subspace of \mathbb{R}^4 (the vectors in ColA have 4 entries).

Page 237, Problem 11:

Because dim(NulA) = 3 and n = 5, dim(RowA) = dim(ColA) = 5 - 3 = 2.

Page 237, Problem 18a:

True or False: If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.

FALSE: As before, the pivot columns in B tell which columns of A form a basis for the column space of A.

Page 237, Problem 18c:

True or False: The dimension of the null space of A is the number of columns of A that are not pivot columns.

TRUE: Because the number of columns of A that are pivot columns equals the rank of A, by the Rank Theorem, the number of columns of A that are not pivot columns must be the dimension of the null space of A (see the proof of the Rank Theorem on page 233).

Page 238, Problem 31:

Compute
$$A = \mathbf{u}\mathbf{v}^T = \begin{bmatrix} 2\\ -3\\ 5 \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} 2a & 2b & 2c\\ -3a & -3b & -3c\\ 5a & 5b & 5c \end{bmatrix}$$
. Each column of this matrix is a multiple of \mathbf{u} , so

 $\dim(\operatorname{Col} A) = 1$, unless a = b = c = 0, in which case $\dim(\operatorname{Col} A) = 0$. Because $\dim(\operatorname{Col} A) = \operatorname{rank} A$, $\operatorname{rank} \mathbf{uv}^{\mathrm{T}} = \operatorname{rank} A \leq 1$. Page 238, Problem 32:

Notice that the second row of the matrix is twice the first. Therefore, take $\mathbf{v} = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$, so that

$$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 1\\2 \end{bmatrix} \begin{bmatrix} 1 & -3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 4\\2 & -6 & 8 \end{bmatrix}.$$