MATH 221, Spring 2018 - Homework 7 Solutions

Due Tuesday, April 3

Section 4.3

Page 213, Problem 3:

The matrix whose columns are the given set of vectors is
$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ -3 & -4 & 1 \end{bmatrix}$$
, which reduces to
$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 5 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Because there are only two pivot positions, the set of vectors are neither linearly independent nor span \mathbb{R}^3 , thus

the set of vectors do NOT form a basis of \mathbb{R}^3 .

Page 213, Problem 8:

The matrix whose columns are the given set of vectors is $\begin{bmatrix} 1 & 0 & 2 & 0 \\ -2 & 3 & -1 & 0 \\ 3 & -1 & 5 & -1 \end{bmatrix}$. Because there are four columns, the

set cannot be linearly indpendent in \mathbb{R}^3 . Thus, the set of vectors do NOT form a basis of \mathbb{R}^3 .

To determine if the set of vectors span \mathbb{R}^3 , row-reduce the matrix:

1	0	2	0 -		[1]	0	2	0 -]	1	0	2	0]
-2	3	$^{-1}$	0	\rightarrow	0	3	3	0	\rightarrow	0	1	1	0	.
								-1						

Because there is a pivot position in each row, the set of vectors do span \mathbb{R}^3 .

Page 213, Problem 13:

To find a basis for ColA, use Theorem 6 of this section. Notice that the pivot positions are in columns 1 and 2 (look at matrix B, which is in row echelon form). Use these columns from matrix A to form a basis. Therefore, a basis for ColA

is $\left\{ \begin{bmatrix} -2\\2\\-3 \end{bmatrix}, \begin{bmatrix} 4\\-6\\8 \end{bmatrix} \right\}$. To find a basis for Nul*A*, write the general solution to $A\mathbf{x} = \mathbf{0}$ in terms of the free variables

$$(x_3 \text{ and } x_4): \mathbf{x} = x_3 \begin{bmatrix} -6\\ -5/2\\ 1\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5\\ -3/2\\ 0\\ 1 \end{bmatrix}. \text{ Thus a basis for NulA is } \left\{ \begin{bmatrix} -6\\ -5/2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -5\\ -3/2\\ 0\\ 1 \end{bmatrix} \right\}.$$

To find a basis for ColA, use Theorem 6 of this section. Notice that the pivot positions are in columns 1, 3, and 5

(look at matrix B, which is in row echelon form). Use these columns from matrix A to form a basis. Therefore, a basis for

$$\operatorname{Col} A \text{ is } \left\{ \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\0\\-3\\0 \end{bmatrix}, \begin{bmatrix} 8\\8\\9\\9 \end{bmatrix} \right\}. \text{ To find a basis for NulA, we need the general solution to } A\mathbf{x} = \mathbf{0} \text{ in terms of the} \right\}$$

free variables $(x_2 \text{ and } x_4)$. Because matrix B is only in row echelon form, reduce it to reduced row echelon form:

$$\begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ 0 & 0 & 3 & -6 & 3 \\ 0 & 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \mathbf{x} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$
. Thus a basis for NulA is
$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Page 214, Problem 21b:

True or False: If $H = \text{Span} \{ \mathbf{b}_1, \dots, \mathbf{b}_p \}$, then $\{ \mathbf{b}_1, \dots, \mathbf{b}_p \}$ is a basis for H.

FALSE: The set $\{\mathbf{b}_1, \ldots, \mathbf{b}_p\}$ must also be linearly independent.

Page 214, Problem 21c:

True or False: The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .

TRUE: Because the matrix is invertible, the columns span \mathbb{R}^n and are linearly independent (by the Invertible Matrix

Theorem). Hence, the columns form a basis for \mathbb{R}^n .

Page 214, Problem 21d:

True or False: A basis is a spanning set that is as large as possible.

FALSE: A basis is a spanning set that is as small possible (read "Two Views of a Basis" on p. 212).

Page 214, Problem 22a:

True or False: A linearly independent set in a subspace H is a basis for H.

FALSE: In order to be a basis, the set must also span H (by definition).

Page 214, Problem 22b:

True or False: If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.

TRUE: By the Spanning Set Theorem, removing linearly dependent vectors in S will still result in a spanning set (this new set is a subset of S). Because the new set will eventually only contain linearly independent vectors, the set will be a basis for V.

True or False: If B is an echelon form of a matrix A, then the pivot columns of B form a basis for ColA.

FALSE: The pivot columns in *B* tell which columns in matrix *A* form the basis for ColA (see the warning after Theorem 6 on page 212).

Page 214, Problem 25:

While it might seem that {v₁, v₂, v₃} is a spanning set for *H*, it is not. Notice that *H* is a subset of Span {v₁, v₂, v₃}. Also, there are vectors in Span {v₁, v₂, v₃} which are not in *H*, such as v₁ and v₃ (the second and third elements of these vectors are not equal). Therefore, {v₁, v₂, v₃} does not span *H*, so {v₁, v₂, v₃} cannot be a basis for *H*. Page 215, Problem 30:

Since k > n, there exist more vectors than there are entries in each vector, so the set is linearly dependent by Theorem 8. Since the set is not linearly independent, it cannot be a basis for \mathbb{R}^n .