MATH 221, Spring 2018 - Homework 6 Solutions

Due Thursday, March 29

Section 4.2

Page 206, Problem 6:
Solve the equation $A \mathbf{x}=\mathbf{0}:\left[\begin{array}{cccccc}1 & 3 & -4 & -3 & 1 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 5 & -6 & 1 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Thus, $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=x_{3}\left[\begin{array}{c}-5 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}6 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$. So, a spanning set for the null space is $\left\{\left[\begin{array}{c}-5 \\ 3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}6 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
Page 206, Problem 9:
The system of equations can be rearranged to $\begin{gathered}p-3 q-4 s-0 r=0 \\ 2 p-0 q-s-5 r=0\end{gathered}$. So the vectors in W are solutions to this system.
Therefore, W is a subspace of \mathbb{R}^{4}, by Theorem 2 (and hence a vector space).
Page 206, Problem 14:
Notice that $W=$ Col A for $A=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2 \\ 5 & -1\end{array}\right]$. Therefore, W is a subspce of \mathbb{R}^{3} (and a vector space) by Theorem 3
(look at Example 4 of this section).
Page 206, Problem 27:
Let $A=\left[\begin{array}{ccc}1 & -3 & -3 \\ -2 & 4 & 2 \\ -1 & 5 & 7\end{array}\right]$. Then, $\mathbf{x}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{0}$. Thus, $\mathbf{x} \in N u l \mathrm{~A}$. Since $N u l \mathrm{~A}$ is a subspace
of \mathbb{R}^{3}, it is closed under scalar multiplication. Therefore, $10 \mathbf{x}=\left[\begin{array}{c}30 \\ 20 \\ -10\end{array}\right]$ is also in $N u l \mathrm{~A}$ (a solution to the system).
Page 206, Problem 28:
Let $A=\left[\begin{array}{ccc}5 & 1 & -3 \\ -9 & 2 & 5 \\ 4 & 1 & -6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 9\end{array}\right]$. Because there is a solution to $A \mathbf{x}=\mathbf{b}, \mathbf{b} \in \operatorname{Col} \mathbf{A}$. Since $\operatorname{Col} \mathrm{A}$ is a subspace
of \mathbb{R}^{3}, it is closed under scalar multiplication. Thus, $5 \mathbf{b}=\left[\begin{array}{c}0 \\ 5 \\ 45\end{array}\right]$ is also in Col A . So, the second system must also have
a solution.

Page 207, Problem 30:
Let $T(\mathbf{x})$ and $T(\mathbf{w})$ be vectors in the range of T. Then, because T is a linear transformation, $T(\mathbf{x})+T(\mathbf{w})=T(\mathbf{x}+\mathbf{w})$ and for any scalar $c, c T(\mathbf{x})=T(c \mathbf{x})$. Because $T(\mathbf{x}+\mathbf{w})$ and $T(c \mathbf{x})$ are in the range of T (which is a subset of W), it follows that the range of T is a subspace of W (closed under addition and scalar multiplication).

