MATH 221, Spring 2018 - Homework 5 Solutions

Due Tuesday, March 13

Section 2.3

Page 115, Problem 2:

$$
A=\left[\begin{array}{cc}
-4 & 2 \\
6 & -3
\end{array}\right]
$$

Notice that $\mathbf{a}_{2}=-\frac{1}{2} \mathbf{a}_{1}$ where \mathbf{a}_{i} is the column vector of the matrix A. Thus, the columns are linearly dependent. By Theorem 8 of this section, the matrix is singular (nonivertible). Also, notice that the determinant is equal to 0 . So, by Theorem 4 of the previous section, the matrix is singular.

Page 115, Problem 4:

$$
A=\left[\begin{array}{ccc}
-5 & 1 & 4 \\
0 & 0 & 0 \\
1 & 4 & 9
\end{array}\right] A^{T}=\left[\begin{array}{ccc}
-5 & 0 & 1 \\
1 & 0 & 4 \\
4 & 0 & 9
\end{array}\right]
$$

Notice that the columns of A^{T} are linearly dependent because the zero vector is a member of the set.
Thus, A^{T} is singular (noninvertible). Hence A is singular (nonivertible), by Theorem 8.

Also, because A contains a row of zeros, it cannot be reduced to the identity matrix.

Therefore, by Theorem 8, it is signular (noninvertible).
Page 115, Problem 8:
$A=\left[\begin{array}{llll}3 & 4 & 7 & 4 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 1\end{array}\right]$
Because the matrix is in echelon form, it is clear that there is a pivot in every row.
Hence, the matrix is invertible by Theorem 8.
Page 115, Problem 11a:

True or False: If the equation $\mathrm{Ax}=\mathbf{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
TRUE: Because (d) of Theorem 8 is true, (b) must also be true.

True or False: If the equation $\mathrm{Ax}=\mathbf{0}$ has a nontrivial solution, then A has fewer than n pivot positions.
TRUE: Because (d) of Theorem 8 is false, (c) must also be false. An $n \times n$ matrix can never have more than n pivot positions, so it must have fewer than n.

Page 115, Problem 11e:

True or False: If A^{T} is not invertible, then A is not invertible.

TRUE: Because (l) of Theorem 8 is false, (a) must also be false.

Page 115, Problem 12a:

True or False: If there is an $n \times n$ matrix D such that $A D=I$, then $D A=I$.
TRUE: Because (k) of Theorem 8 is true, (j) is also true. Because $A D=I, D=A^{-1}$, so $D A=A^{-1} A=I$.

Page 115, Problem 12b:

True or False: If the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} into \mathbb{R}^{n}, then the row reduced echelon form of A is I.

FALSE: In order for this to follow from Theorem $8, \mathbf{x} \mapsto A \mathbf{x}$ must map \mathbb{R}^{n} onto \mathbb{R}^{n}, not into.

Page 115, Problem 12c:

True or False: If the columns of A are linearly independent, then the columns of A span \mathbb{R}^{n}.

TRUE: Because (e) of Theorem 8 is true, (h) must also be true.

Page 115, Problem 21:

Notice that on page 112, in the paragraph at the end of the page, it says (g) in Theorem 8 could be rewritten as
"The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^{n}. "

In problem 21, this statement is false, thus (h) of Theorem 8 must also be false, so the columns of do not span \mathbb{R}^{n}.

Page 115, Problem 27:

Assume $A B$ is invertible. Then, by Theorem $8(\mathrm{k})$ of this section, there exists an $n \times n$ matrix W such that $A B W=I$.

By properties of matrices (and because the order is defined), $A B W=A(B W)=I$.
Because A is square, let $B W=D$. Thus, by Theorem $8(\mathrm{k}), A$ is invertible.

Since statement (f) of the IMT is false, we know all other parts of the theorem are false. Thus, the transformation is not onto, A is not invertible, and the transformation is not invertible (by Theorem 9).

Page 115, Problem 39:

Because T maps \mathbb{R}^{n} onto \mathbb{R}^{n}, then the standard matrix A is invertible, by Theorem 8 of this section.
Hence, by Theorem 9 of this section, T is invertible and A^{-1} is the standard matrix of T^{-1}.
Thus, by Theorem 8 of this section, the columns of A^{-1} are linearly independent and span \mathbb{R}^{n}.

By Theorem 12 in Section 1.9, this shows that T^{-1} is a one-to-one mapping of \mathbb{R}^{n} onto \mathbb{R}^{n}.

Section 4.1

Page 196, Problem 16:

It is clear that W is not a vector space because it can never contain the zero vector (the first entry is always 1).

Page 196, Problem 21:
The set H is a subspace of $M_{2 x 2}$ because:

1) If $a=b=d=0$, the zero vector is contained in the space.

Let $\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]$ and $\left[\begin{array}{cc}a_{2} & b_{2} \\ 0 & d_{2}\end{array}\right]$ be two arbitrary matrices in H.
2) Then, $\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]+\left[\begin{array}{cc}a_{2} & b_{2} \\ 0 & d_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1}+a_{2} & b_{1}+b_{2} \\ 0 & d_{1}+d_{2}\end{array}\right]$, which is of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, so H is closed under addition.
3) Let β be an arbitrary scalar. Then, $\beta\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]=\left[\begin{array}{cc}\beta a_{1} & \beta b_{1} \\ 0 & \beta d_{1}\end{array}\right]$, which is of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$.

So H is closed under scalar multiplication.
Page 196, Problem 22:
The set $M_{2 x 4}$ is the set of all matrices of the form $\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h\end{array}\right]$ where the entries are arbitrary.
This set is a subspace (as stated in the problem).
Let the matrix F be $F=\left[\begin{array}{cc}A & B \\ C & D \\ E & F\end{array}\right]$ where the entries are fixed.
The set $H=\left\{A \in M_{2 x 4}: F A=0\right\}$ is a subset of $M_{2 x 4}$. To show H is a subspace:

1) Because $F 0=0,0 \in H$.
2) Let A_{1} and A_{2} be arbitrary matrices in H. Then, $F\left(A_{1}\right)=0$ and $F\left(A_{2}\right)=0$.

Because $F\left(A_{1}+A_{2}\right)=F\left(A_{1}\right)+F\left(A_{2}\right)=0+0=0$. Thus, $A_{1}+A_{2} \in H$, so H is closed under addition.
3) Let $A \in H$ and $c \in \mathbb{R}$ be arbitrary. Thus, $F A=0$. So, $F(c A)=c F A=c(F A)=0$.

Thus, $c A \in H$, so H is closed under scalar multiplication.

Page 197, Problem 32:
To show $H \cap K$ is a subspace, check the three conditions:

1) Because H and K are subspaces, $\mathbf{0} \in H$ and $\mathbf{0} \in K$. Thus, $\mathbf{0} \in H \cap K$.
2) Let $\mathbf{u} \in H \cap K$ and $\mathbf{v} \in H \cap K$ be arbitrary. Then, $\mathbf{u} \in H$ and $\mathbf{u} \in K$ and $\mathbf{v} \in H$ and $\mathbf{v} \in K$.

Because H and K are subspaces, $\mathbf{u}+\mathbf{v} \in H$ and $\mathbf{u}+\mathbf{v} \in K$. Thus, $\mathbf{u}+\mathbf{v} \in H \cap K$.
3) Let $c \in \mathbb{R}$ and $\mathbf{u} \in H \cap K$ be arbitrary. Then, $\mathbf{u} \in H$ and $\mathbf{u} \in K$.

Because H and K are subspaces, $c \mathbf{u} \in H$ and $c \mathbf{u} \in K$. Thus, $c \mathbf{u} \in H \cap K$.
An example in \mathbb{R}^{2} to show $H \cup K$ is not always a subspace would be $H=\{(x, 0): x \in \mathbb{R}\}$ and $K=\{(0, y): y \in \mathbb{R}\}$ (the x-axis and y-axis, respectively). Let $\mathbf{u}=(1,0) \in H \cup K$ and $\mathbf{v}=(0,1) \in H \cup K$.

Then, $\mathbf{u}+\mathbf{v}=(1,1)$, which is not in H or in K, so it is not in $H \cup K$.

Thus, $H \cup K$ is not closed under addition and is therefore not a subspace.

Page 197, Problem 30:
Assume $c \mathbf{u}=\mathbf{0}$ for some non-zero scalar c. Since c is non-zero, we know there exists $c^{-1}=\frac{1}{c}$ such that $c^{-1} c=1$.
Thus, $\mathbf{u}=\left(c^{-1} c\right) \mathbf{u}=c^{-1}(c \mathbf{u})=c^{-1} \mathbf{0}$ because we assume $c \mathbf{u}=\mathbf{0}$. So, we get $\mathbf{u}=c^{-1} \mathbf{0}=\mathbf{0}$ by Property 2.

