MATH 221, Spring 2018 - Homework 4 Solutions

Due Tuesday, Februrary 27

Section 1.8

Page 68, Problem 2:

$$
\begin{aligned}
& T(\mathbf{u})=A \mathbf{u}=\left[\begin{array}{lll}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
3 \\
6 \\
-9
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] \\
& T(\mathbf{v})=A \mathbf{v}=\left[\begin{array}{lll}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
\frac{a}{3} \\
\frac{b}{3} \\
\frac{c}{3}
\end{array}\right]
\end{aligned}
$$

Page 68, Problem 4:
We look for \mathbf{x} such that $\mathbf{b}=T(\mathbf{x})=A \mathbf{x}$, which is equivalent to solving the system represented by the augmented matrix:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & -6 \\
0 & 1 & -3 & -4 \\
2 & -5 & 6 & -5
\end{array}\right] \text {. Row reduction yields }\left[\begin{array}{cccc}
1 & 0 & 0 & -17 \\
0 & 1 & 0 & -7 \\
0 & 0 & 1 & -1
\end{array}\right] \text {. Therefore, the solution is unique and } \mathbf{x}=\left[\begin{array}{c}
-17 \\
-7 \\
-1
\end{array}\right] \text {. }
$$

Page 68, Problem 9:
We look for \mathbf{x} such that $\mathbf{0}=T(\mathbf{x})=A \mathbf{x}$, which is equivalent to solving the system represented by the augmented matrix:

$$
\left[\begin{array}{ccccc}
1 & -3 & 5 & -5 & 0 \\
0 & 1 & -3 & 5 & 0 \\
2 & -4 & 4 & -4 & 0
\end{array}\right] \text {. Row reduction yields }\left[\begin{array}{ccccc}
1 & 0 & -4 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \text {. Since the system is overdetermined, there is a }
$$

free variable $\left(x_{3}\right)$ and the solution is given by: $\mathbf{x}=t\left[\begin{array}{l}4 \\ 3 \\ 1 \\ 0\end{array}\right]$, where t is an arbitrary scalar in \mathbb{R}.
Page 68, Problem 17:
Linear transformations preserve operations of vector addition and scalar multiplication (page 66). Therefore,

$$
\begin{aligned}
& T(2 \mathbf{u})=2 T(\mathbf{u})=2\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
8 \\
2
\end{array}\right] \\
& T(3 \mathbf{v})=3 T(\mathbf{v})=3\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-3 \\
9
\end{array}\right] \\
& T(2 \mathbf{u}+3 \mathbf{v})=T(2 \mathbf{u})+T(3 \mathbf{v})=\left[\begin{array}{l}
8 \\
2
\end{array}\right]+\left[\begin{array}{c}
-3 \\
9
\end{array}\right]=\left[\begin{array}{c}
5 \\
11
\end{array}\right]
\end{aligned}
$$

Page 69, Problem 23:
a. When $b=0$, then $f(x)=m x$. So, for any $x, y \in \mathbb{R}$ and scalars a and b, we have:
$f(a x+b y)=m(a x+b y)=m(a x)+m(b y)=a(m x)+b(m y)=a f(x)+b f(y)$ by properties of Real Numbers.
b. When $b \neq 0, f(0)=m(0)+b=b \neq 0$, which is a violation of the property that linear transformations always map zero to zero.
c. f is called a linear function because its graph is a straight line (demonstrating a linear relationship)

Page 69, Problem 26:
a. Refering to the figure on page 47 , because $\mathbf{q}-\mathbf{p}$ is parallel to line M , and \mathbf{p} lies on M , a parametric equation of the line is $\mathbf{x}=\mathbf{p}+t(\mathbf{q}-\mathbf{p})$. Expanding this expression yields $\mathbf{x}=\mathbf{p}+t \mathbf{q}-t \mathbf{p} \Rightarrow \mathbf{x}=\mathbf{p}-t \mathbf{p}+t \mathbf{q} \Rightarrow \mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}$.
b. Because $\mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}, T(\mathbf{x})=T((1-t) \mathbf{p}+t \mathbf{q})$, then by definition of linear transformations,
$T((1-t) \mathbf{p}+t \mathbf{q})=T((1-t) \mathbf{p})+T(t \mathbf{q})=(1-t) T(\mathbf{p})+t T(\mathbf{q})$
If \mathbf{p} and \mathbf{q} are distinct, then this equation is representative of the line segment between $T(\mathbf{p})$ and $T(\mathbf{q})$ (like the equation found in part a). Otherwise, $T(\mathbf{p})=(1-t) T(\mathbf{p})+t T(\mathbf{p})=T(\mathbf{p})-t T(\mathbf{p})+t T(\mathbf{p})=T(\mathbf{p})$, which is a single point. (the same is true for $T(\mathbf{q})$)

Page 69, Problem 27:
$T(\mathbf{x})=T(s \mathbf{u}+t \mathbf{v})=s T(\mathbf{u})+t T(\mathbf{v})$ such that $s, t \in \mathbb{R}$
The set of images is $\operatorname{Span}\{T(\mathbf{u}), T(\mathbf{v})\}$. If $\{T(\mathbf{u}), T(\mathbf{v})\}$ is linearly independent, then $\operatorname{Span}\{T(\mathbf{u}), T(\mathbf{v})\}$ is a plane through $T(\mathbf{u}), T(\mathbf{v})$, and $\mathbf{0}$. If $\{T(\mathbf{u}), T(\mathbf{v})\}$ is linearly dependent (one is a multiple of the other and not both zero), then $\operatorname{Span}\{T(\mathbf{u}), T(\mathbf{v})\}$ is a line through $\mathbf{0}$. If $T(\mathbf{u})=T(\mathbf{v})=\mathbf{0}$, then $\operatorname{Span}\{T(\mathbf{u}), T(\mathbf{v})\}$ is $\{\mathbf{0}\}$.

Page 69, Problem 30:
Because $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ span \mathbb{R}^{n}, then any $\mathbf{x} \in \mathbb{R}^{\mathrm{n}}$ can be written as $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}$, for constants $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.
Then, $T(\mathbf{x})=T\left(\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}\right)=\alpha_{1} T\left(\mathbf{v}_{1}\right)+\ldots+\alpha_{1} T\left(\mathbf{v}_{n}\right)=\alpha_{1} \mathbf{0}+\ldots+\alpha_{n} \mathbf{0}=\mathbf{0}$.

Page 69, Problem 32:

If T were linear then $T(c \mathbf{x})=c T(\mathbf{x})$. Use any counterexample to show this is not true.
$T((0,1))=(-2,-4)$, but $T(-1 \cdot(0,1))=T((0,-1))=(-2,4) \neq-1 \cdot T((0,1))=(2,4)$
Page 70, Problem 36:
Begin with the hint. We know that because $\{T(\mathbf{u}), T(\mathbf{v})\}$ is linearly dependent, there exist scalars c_{1} and c_{2} (not both zero), such that $c_{1} T(\mathbf{u})+c_{2} T(\mathbf{v})=\mathbf{0}$. Because T is linear, this becomes $T\left(c_{1} \mathbf{u}+c_{2} \mathbf{v}\right)=\mathbf{0}$. Let $\mathbf{x}=c_{1} \mathbf{u}+c_{2} \mathbf{v}$. Because c_{1} and c_{2} are not both zero (one may be 0) and $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent (which implies neither \mathbf{u}
or \mathbf{v} are $\mathbf{0}), c_{1} \mathbf{u}+c_{2} \mathbf{v} \neq \mathbf{0}$. Thus, $T(\mathbf{x})=\mathbf{0}$ has a nontrivial solution.

Section 1.9

Page 78, Problem 11:
The transformation maps $\mathbf{e}_{1} \rightarrow \mathbf{e}_{1} \rightarrow-\mathbf{e}_{1}$ and $\mathbf{e}_{2} \rightarrow-\mathbf{e}_{2} \rightarrow-\mathbf{e}_{2}$, which in matrix form is $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
This is the same as a rotation through π radians because $\left[\begin{array}{cc}\cos \pi & -\sin \pi \\ \sin \pi & \cos \pi\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Since a linear transformation is completely determined by what it does to the columns of the identity matrix (Theorem 10 of this section), the rotation transformation has the same effect as T on every vector in \mathbb{R}^{2}.

Page 78, Problem 15:
The matrix entries are the coefficients of the variables on the right-hand side of the equation: $\left[\begin{array}{ccc}2 & -4 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 3\end{array}\right]$
Page 78, Problem 22:
In this problem, we will use the fact that $T(\mathbf{x})=A \mathbf{x}$. Because $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, we know \mathbf{x} is a 2 x 1 vector and the matrix
A must be 3×2. Therefore the set up of the transformation should be of the form:
$T(\mathbf{x})=\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 x_{1}-x_{2} \\ -3 x_{1}+x_{2} \\ 2 x_{1}-3 x_{2}\end{array}\right]$. The missing entries of the matrix A are the coefficients of the variables
on the right-hand side of the equation. Therefore: $T(\mathbf{x})=\left[\begin{array}{cc}2 & -1 \\ -3 & 1 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Because we are looking for $\mathbf{x s u c h}$ that
$T(\mathbf{x})=\left[\begin{array}{c}0 \\ -1 \\ 4\end{array}\right]$, we solve the system: $\left[\begin{array}{ccc}2 & -1 & 0 \\ -3 & 1 & -1 \\ 2 & -3 & 4\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$. Thus, $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Page 79, Problem 26:
In order to answer this question, note that the transformation matrix is $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 4 & 9 & -8\end{array}\right]$.
Because there are more columns than rows, the columns must be linearly dependent. Therefore, T is not one-to-one.
If we row-reduce the matrix, $\left[\begin{array}{ccc}1 & -2 & 3 \\ 4 & 9 & -8\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 17 & -20\end{array}\right]$, we see that there is a pivot in every row.
Thus, the columns of A span \mathbb{R}^{2}. Hence, T is onto.
Page 79, Problem 34:
Using the hint, let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{\mathbf{p}}$ be arbitrary vectors and let $c, d \in \mathbb{R}$ be arbitrary scalars.

Because S is linear, $T(S(c \mathbf{u}+d \mathbf{v}))=T(c S(\mathbf{u})+d S(\mathbf{v}))$. Because T is linear, $T(c S(\mathbf{u})+d S(\mathbf{v}))=c T(S(\mathbf{u}))+d T(S(\mathbf{v}))$.

Therefore, $\mathbf{x} \mapsto T(S(\mathbf{x}))$ is a linear transformation.

