# MATH 221, Spring 2018 - Homework 3 Solutions 

Due Tuesday, February 20

## General Comments:

- Properties of matrix algebra are different than the properties of real-number algebra. You should read pages 93-98 of the text for a more detailed explanation, but below are some important differences.
- Whereas in real-number algebra for any numbers $x$ and $y$ it is true that $x y=y x$, in matrix algebra it is not always true that for any two matrices $A$ and $B$ that $A B=B A$. For example, if we have the expression $A B C$ involving matrices, IT IS NOT TRUE THAT $A B C=C A B$ or $A B C=A C B$.
- There is no "division" operation in matrix algebra. For example, given a matrix $A$, there is no matrix $\frac{1}{A}$. The inverse of a matrix (if it exists), is denoted $A^{-1}$, NOT $\frac{1}{A}$.
- You cannot "cancel" matrices out of expressions. For example, if we have $A B C=D C P$, it is not true (in general) that $A B=D P$.
- In real-number algebra for any numbers $x$ and $y$ if $x y=0$, then either $x=0$ or $y=0$, or $x=y=0$. In matrix algebra it is not always true that for any two matrices $A$ and $B$ if $A B=0$, then either $A=0$, or $B=0$, or $A=B=0$.
- Consider the following example. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Obviously, neither $A$ nor $B$ is the zero matrix, but $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
- If we have an expression $A B=B C$, and we wish to multiply both sides of the equation by a matrix $D$, we must multiply $D$ on the same side of each equation. If we right-multiply, we get $A B D=B C D$. If we left-multiply, we get $D A B=D B C$. You cannot do both. For example, it is not true, in general, that $A B D=D B C$.


## Section 1.7

Page 60, Problem 6:

Determine if $\mathrm{Ax}=\mathbf{0}$ has only the trivial solution:

$$
\left[\begin{array}{cccc}
-4 & -3 & 0 & 0 \\
0 & -1 & 5 & 0 \\
1 & 1 & -5 & 0 \\
2 & 1 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -5 & 0 \\
0 & 1 & -5 & 0 \\
-4 & -3 & 0 & 0 \\
2 & 1 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -5 & 0 \\
0 & 1 & -5 & 0 \\
0 & 1 & -20 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -5 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Because there are no free variables, the system has only the trivial solution, so the columns of $\mathbf{A}$ form a linearly independent set.

Page 60, Problem 8:
You could use the same process as above, but notice that there are 4 vectors in $\mathbb{R}^{3}$ (because the matrix is $3 \times 4$ ).

By Theorem 8 of this section, the vectors are linearly dependent (there must be at least one free variable, if a solution exists).

Page 61, Problem 14:

In order for the vectors to be linearly dependent, the system $\mathrm{Ax}=\mathbf{0}$ (where A is a matrix formed by the column vectors) must have a nontrivial solution.

$$
\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
-2 & 7 & 1 & 0 \\
-4 & 6 & h & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
0 & 1 & 5 & 0 \\
0 & -6 & 8+h & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 38+h & 0
\end{array}\right]
$$

A nontrivial solution exists when there is a free variable. Therefore, a nontrivial solution exists for $h=-38$.

Page 61, Problem 18:
This a set of 4 vectors in $\mathbb{R}^{2}$. By Theorem 8 , because $p=4>2=n$, the set of vectors is linearly dependent.
Page 61, Problem 20:

By Theorem 9, any set that contains the zero vector is linearly dependent. Thus, this set is linearly dependent.

Page 61, Problem 21a:

True or False: The columns of a matrix A are linearly independent if the equation $\mathrm{Ax}=\mathbf{0}$ has the trivial solution.

FALSE - A homogenous system always has the trvial solution (as explained on page 56). The question of linear independence is whether the trivial solution is the only solution.

Page 61, Problem 21b:

True or False: If $S$ is a linearly dependent set, then each vector is a linear combination of the other vectors in $S$.

FALSE - Not all vectors need to be linear combinations of each other. At least one of the vectors needs to be a linear combination of the others (see Thereom 7 and the following warning on page 58).

Page 61, Problem 21c:

True or False: The columns of any $4 \times 5$ matrix are linearly dependent.

TRUE - In this case, there are 5 vectors in $\mathbb{R}^{4}$. By Theorem 8 in this section, because $\mathrm{n}=4<5=\mathrm{p}$, the set of vectors formed by the columns of this matrix are linearly dependent.

Page 61, Problem 21d:
If $\mathbf{x}$ and $\mathbf{y}$ are linearly independent, and if $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then $\mathbf{z}$ is in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.

TRUE - Because $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent but $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, $\mathbf{z}$ must be a linear combination of $\mathbf{x}$ and $\mathbf{y}$. Thus, $\mathbf{z}$ must be in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.

Page 61, Problem 30:
a) Complete the blank: "If $A$ is an $m \times n$ matrix, then the columns of $A$ are linearly independent if and only if $A$ has $\mathbf{n}$ pivot columns.
b) The columns of $A$ are linearly independent if and only if $A \mathbf{x}=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$ is the only solution, which is true
if and only if there are no free variables, which happens if and only if every column of $A$ has a pivot.

## Section 2.2

Page 109, Problem 4:

$$
A=\left[\begin{array}{ll}
2 & -4 \\
4 & -6
\end{array}\right] A^{-1}=\frac{1}{-12+16}\left[\begin{array}{ll}
-6 & 4 \\
-4 & 2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
-6 & 4 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-1 & \frac{1}{2}
\end{array}\right]
$$

Page 109, Problem 9a:

True or False: In order for a matrix B to be the inverse of A , the equations $\mathrm{AB}=\mathrm{I}$ and $\mathrm{BA}=\mathrm{I}$ must both be true.

TRUE - This is the definition of invertible on page 103.

Page 109, Problem 9b:

True or False: If A and B are $\mathrm{n} \times \mathrm{n}$ and invertible, then $A^{-1} B^{-1}$ is the inverse of AB .
FALSE - By Theorem 6 on page $105,(A B)^{-1}=B^{-1} A^{-1}$, which does not always equal $A^{-1} B^{-1}$.
Page 109, Problem 9c:
True or False: If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $a b-c d \neq 0$, then $A$ is invertible.
FALSE - By Theorem 4 of this section, a $2 \times 2$ matrix is invertible if and only if $a d-b c \neq 0$.

The expression $a b-c d$ reveals nothing about the invertibility of a matrix.

For example, $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \Rightarrow a b-c d=1-0 \neq 0$, but the matrix is not invertible because $a d-b c=0$.

Page 109, Problem 9d:

True or False: If $A$ is an invertible $n \times n$ matrix, then the equation $A x=\mathbf{b}$ is consistent for each $\mathbf{b}$ in $\mathbb{R}^{n}$.

TRUE - This follows from Theorem 5 of this section on page 104.

Page 110, Problem 14:
Because $(B-C)$ is an $\mathrm{m} \times \mathrm{n}$ matrix, $D$ must be an $\mathrm{n} \times \mathrm{n}$ matrix (because the product $(B-C) D$ is defined and $D$ is invertible). Thus, 0 is an $\mathrm{m} \times \mathrm{n}$ matrix. Beacuse $D$ is invertible,
$(B-C) D D^{-1}=0 \cdot D^{-1} \Rightarrow(B-C) I_{n}=0$, where 0 is still an mxn matrix because $D^{-1}$ is still n xn .

Thus, $B-C=0$ because $I_{n}$ is essentially 1. Thus, $B-C+C=0+C \Rightarrow B+(-C+C)=0+C \Rightarrow B=C$.
Page 110, Problem 16:

Because $A$ and $B$ are both n x n matrices, their products and inverses (if they exist) are also n x n.
Using the hint, let $C=A B$ and solve for $A: C B^{-1}=A B B^{-1} \Rightarrow C B^{-1}=A$, but $C=A B$.

Therefore, $A$ is the product of invertible matrices. By Theorem 6 of this section, A must also be invertible.

Because the order of all matrices is $\mathrm{n} \times \mathrm{n}$, their products and inverses (if they exist) are also $\mathrm{n} \times \mathrm{n}$.
Because $B$ is invertible, $A B B^{-1}=B C B^{-1} \Rightarrow A I_{n}=B C B^{-1} \Rightarrow A=B C B^{-1}$.

Page 110, Problem 31:

To find the inverse, use the algorithm on page 108:
$\left[\begin{array}{cccccc}1 & 0 & -2 & 1 & 0 & 0 \\ -3 & 1 & 4 & 0 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & -3 & 8 & -2 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 7 & 3 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{array}\right]$.
So, the inverse is $\left[\begin{array}{ccc}8 & 3 & 1 \\ 10 & 4 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2}\end{array}\right]$.

