MATH 221, Spring 2018 - Homework 2 Solutions

Due Tuesday, February 13

Note - Feedback was not provided on the following problems:
Problem 29 from Section 1.3
Problems 24 and 26 from Section 1.4

General Comments:

- Please remember to answer the question that is being asked. For example, if a question asks "Is \mathbf{v} in the span of the columns of A ?", your final answer should include either: "yes, \mathbf{v} is in the span of the columns of A " or "no, \mathbf{v} is not in the span of the columns of A ". Simply row-reducing the augmented system $[A \mathbf{v}]$ without answering the question is insufficient. Additionally, only stating "yes" or "no" without a justification is insufficient. Always explain your reasoning!
- Example: Because there is a pivot in each column of the augmented matrix $[A \mathbf{v}]$, there is no solution to the equaion $A \mathbf{x}=\mathbf{v}$. Therefore, \mathbf{v} is not in the span of the columns of A.
- Answering the question of whether or not a vector (for example b) is in the span of the columns of a matrix (for example A) is equivalent to determining if $A \mathbf{x}=\mathbf{b}$ has a solution. The solution can be unique (no free variables) or there may exist infinitely many solutions (at least one free variable).
- Note the difference in properties relating to only a matrix A vs. an augmented matrix $[A \mathbf{b}]$ (paritcularly the warning after Theorem 4 on page 37 of the text).
- A true/false question always needs supporting evidence. This can either be a reference to a page in the text, a theorem, a definition, or a counterexample.

Section 1.3

Page 32, Problem 12:

Asking whether the vectors form a linear combination of vector \mathbf{b} is equiavelnt to determining if the linear system
that forms the augmented matrix $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ has a solution. The matrix is $\left[\begin{array}{cccc}1 & -2 & -6 & 11 \\ 0 & 3 & 7 & -5 \\ 1 & -2 & 5 & 9\end{array}\right]$ and row operations result in: $-R_{1}+R_{3} \rightarrow R_{3}:\left[\begin{array}{cccc}1 & -2 & -6 & 11 \\ 0 & 3 & 7 & -5 \\ 0 & 0 & 11 & 2\end{array}\right]$. Because there is a pivot in every row and none in the right-most column, the linear system is consistent, and hence the vectors do form a linear combination of the vector \mathbf{b}.

Page 32, Problem 14:

Asking whether the vectors formed by the columns of matrix A form a linear combination of vector \mathbf{b} is equiavelnt to determining if the linear system that forms the augmented matrix $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ has a solution. Therefore, the matrix is $\left[\begin{array}{cccc}1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6\end{array}\right]$, and performing row operations $2 R_{1}+R_{2} \rightarrow R_{2}:\left[\begin{array}{cccc}1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6\end{array}\right]-2 R_{2}+R_{3} \rightarrow R_{3}:$
$\left[\begin{array}{llll}1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$, which is a consistent system (with infinitely many solutions). Therefore, the vectors of the columns of
the matrix A do form a linear combination of the vector \mathbf{b}.

Page 32, Problem 16:
This question is asking for what value of h is \mathbf{y} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. In \mathbb{R}^{3}, the span of two nonzero vectors (with neither the multiple of the other) is a plane that contains the two vectors and the origin in addition to all the vectors that can be written as a linear combination of the two vectors. Therefore, to determine when \mathbf{y} is in this plane, determine when the system $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{y}$ is consistent. To do so, write the system as a linear combination and reduce:
$\left[\begin{array}{ccc}1 & -2 & h \\ 0 & 1 & -3 \\ -2 & 7 & -5\end{array}\right] 2 R_{1}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}1 & -2 & h \\ 0 & 1 & -3 \\ 0 & 3 & 2 h+-5\end{array}\right]-3 R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}1 & -2 & h \\ 0 & 1 & -3 \\ 0 & 0 & 2 h+4\end{array}\right]$. The system will
only be consistent when there is no pivot in the right-most column, so $2 h+4=0$ in order for there to be no pivot in that position. So, $h=-2$.

Page 32, Problem 23c:
True or False: An example of a linear combination of the vectors \mathbf{v}_{1} and \mathbf{v}_{2} is the vector $\frac{1}{2} \mathbf{v}_{1}$. TRUE
Consider the linear combination $\frac{1}{2} \mathbf{v}_{1}+0 \mathbf{v}_{2}$ (on page 28 of the text).
Page 32, Problem 23d:

True or False: The solution set of the linear system whose augmented matrix is $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}\end{array}\right]$ is the same as the solution set of the equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}$. TRUE

This is defined in the box on page 29 of the text.
Page 32, Problem 23e:

True or False: The set $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin. FALSE

This is true only when \mathbf{u} and \mathbf{v} are both nonzero with \mathbf{v} not a multiple of \mathbf{u} (as explained on page 30 in the text).
Page 32, Problem 29:
Direct calculation: $\overline{\mathbf{v}}=\frac{1}{4+2+3+5}\left(4\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]+2\left[\begin{array}{c}-4 \\ 2 \\ 3\end{array}\right]+3\left[\begin{array}{c}4 \\ 0 \\ -2\end{array}\right]+5\left[\begin{array}{c}1 \\ -6 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}17 / 14 \\ -34 / 14 \\ 16 / 14\end{array}\right]=\left[\begin{array}{c}17 / 14 \\ -17 / 7 \\ 8 / 7\end{array}\right]$

Section 1.4

Page 40, Problem 2:

The product is not defined because the order of the matrix is 3×1 and the order of the vector is 2 x 1 . The number of
columns of the matrix (1) does not equal the number of entries of the vector (2).

Page 40, Problem 4:

The product is defined because the order of the matrix is 2 x 3 and the vector is 3×1 (so the number of columns (3) in the matrix is equal to the number of entries in the vector). The order of the product should be 2 x 1 .
a. Using the definition, as in Example 1 on page 35:
$\left[\begin{array}{ccc}1 & 3 & -4 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=1\left[\begin{array}{l}1 \\ 3\end{array}\right]+2\left[\begin{array}{l}3 \\ 2\end{array}\right]+1\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]+\left[\begin{array}{l}6 \\ 4\end{array}\right]+\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
b. Using the row-vector rule (explained on page 38):
$\left[\begin{array}{ccc}1 & 3 & -4 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}1(1)+3(2)+-4(1) \\ 3(1)+2(2)+1(1)\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
Page 40, Problem 6:

This exercise is similar to part (a) of problem 4. Use the elements of the vector as scalars for the columns of the matrix:

$$
-3 \cdot\left[\begin{array}{c}
2 \\
3 \\
8 \\
-2
\end{array}\right]+5 \cdot\left[\begin{array}{c}
-3 \\
2 \\
-5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-21 \\
1 \\
-49 \\
11
\end{array}\right]
$$

Page 40, Problem 8:

This is similar to the previous exercise, but now write the column vectors as a 2 x 4 matrix, the scalars as a 4 x 1 column-vector, and keep the left-side of the equation as a two-column vector:

$$
\left[\begin{array}{cccc}
2 & -1 & -4 & 0 \\
-4 & 5 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{c}
5 \\
12
\end{array}\right]
$$

Page 40 Problem 9:
Vector Equation: $x_{1}\left[\begin{array}{l}5 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 4\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$ Matrix Equation: $\left[\begin{array}{ccc}5 & 1 & -3 \\ 0 & 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$
Page 40, Problem 12:

$$
\begin{aligned}
& \text { Augmented Matrix: }\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
-3 & -4 & 2 & 2 \\
5 & 2 & 3 & -3
\end{array}\right] \text { Row-Reduction: }\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & 2 & -1 & 5 \\
0 & -8 & 8 & -8
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & 2 & -1 & 5 \\
0 & 1 & -1 & 1
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & 2 & -1 & 5 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & 4 \\
0 & 2 & 0 & 8 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \text { The solution, as a vector: } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
4 \\
3
\end{array}\right]}
\end{aligned}
$$

To answer this question, determine if \mathbf{u} is in the Span of these columns, determine if \mathbf{u} is a linear combination of the columns of A . That is, determine if $\mathrm{A} \mathbf{x}=\mathbf{u}$ has a solution. The augmented matrix is $\left[\begin{array}{ccc}3 & -5 & 0 \\ -2 & 6 & 4 \\ 1 & 1 & 4\end{array}\right]$ and row-reduction yields: $\left[\begin{array}{ccc}1 & 1 & 4 \\ 3 & -5 & 0 \\ -2 & 6 & 4\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 1 & 4 \\ 0 & -8 & -12 \\ 0 & 8 & 12\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$.

Because there is no pivot in the last column, a solution exists, so \mathbf{u} is in the plane in \mathbb{R}^{3} spanned by the columns of A .

Page 40, Problem 14:
This question is answered in the same way as above. That is, determine if $\mathbf{A x}=\mathbf{u}$ has a solution.
The augmented matrix is $\left[\begin{array}{cccc}2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4\end{array}\right]$ and row-reduction yields:
$\left[\begin{array}{cccc}2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -4\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 3\end{array}\right]$. Because there is a pivot in the last column, no solution exists, so \mathbf{u} is NOT in the subset of \mathbb{R}^{3} spanned by the columns of A.

Page 41, Problem 22:
The matrix formed by these vectors is $\left[\begin{array}{ccc}0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 9 & -6\end{array}\right]$, which is row equivalent to $\left[\begin{array}{ccc}-3 & 9 & -6 \\ 0 & 3 & -2 \\ 0 & 0 & 4\end{array}\right]$.
It is clear that there is a pivot in each row, so the vectors span \mathbb{R}^{3} by Theorem 4 of this section.
Page 42, Problem 34:

We know $\mathbf{v}_{1}=A \mathbf{u}_{1}$ and $\mathbf{v}_{2}=A \mathbf{u}_{2}$ are consistent and $\mathbf{w}=\mathbf{v}_{1}+\mathbf{v}_{2}$. So, $\mathbf{w}=\mathbf{v}_{1}+\mathbf{v}_{2}=A \mathbf{u}_{1}+A \mathbf{u}_{2}$. By

Theorem 5a of this section, $\mathbf{w}=A \mathbf{u}_{1}+A \mathbf{u}_{2}=A\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)$. Therefore, $\mathbf{x}=\mathbf{u}_{1}+\mathbf{u}_{2}$ is a solution to $A \mathbf{x}=\mathbf{w}$.

Page 41, Problem 35:

Assume $\mathrm{A} \mathbf{y}=\mathbf{z}$ is true. Then, $5 \mathbf{z}=5 \mathrm{~A} \mathbf{y}=\mathrm{A}(5 \mathbf{y})$ (by Theorem 5 b on page 39). Let $\mathbf{x}=5 \mathbf{y}$. Then, $\mathrm{A} \mathbf{x}=5 \mathbf{z}$ is also consistent.

Section 1.5

Page 47, Problem 2:
Use row operations on the augmented matrix: $\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ -2 & -3 & -4 & 0 \\ 2 & -4 & 9 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & -7 & 5 & 0\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & 0 & 3 & 0\end{array}\right]$. Because there is a pivot in every column of the coefficient matrix, there are no
free variables, so the system has only the trivial solution.

Page 47, Problem 8:
In order to solve this problem, put the matrix $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{0}\end{array}\right]$ (where \mathbf{a}_{1}, etc. are the columns of A) in reduced echelon form: $\left[\begin{array}{ccccc}1 & -3 & -8 & 5 & 0 \\ 0 & 1 & 2 & -4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & -2 & -7 & 0 \\ 0 & 1 & 2 & -4 & 0\end{array}\right]$, which is equivalent to the system $\begin{aligned} & x_{1}-2 x_{3}-7 x_{4}=0 \\ & x_{2}+2 x_{3}-4 x_{4}=0\end{aligned}$. It is clear that the basic variables are x_{1} and x_{2} while the free varaibles are x_{3} and x_{4}. Solving for the free variables results in: $\begin{gathered}x_{1}=2 x_{3}+7 x_{4} \\ x_{2}=-2 x_{3}+4 x_{4}\end{gathered}$. Writing in parametric vector form:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3}+7 x_{4} \\
-2 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
7 x_{4} \\
4 x_{4} \\
0 \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
4 \\
0 \\
1
\end{array}\right]
$$

Page 47, Problem 10:
This is the same process as problem 8 in this section: $\left[\begin{array}{ccccc}-1 & -4 & 0 & -4 & 0 \\ 2 & -8 & 0 & 8 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$,
$x_{1}=-4 x_{4}$
$x_{2}=0$. The basic variables are x_{1} and x_{2} while the free variables are x_{3} and x_{4}. The parametric vector
form is: $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ 1\end{array}\right]$.
Page 47, Problem 12:
This is the same process as the previous two problems: $\left[\begin{array}{ccccccc}1 & -2 & 3 & -6 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & -6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\rightarrow\left[\begin{array}{ccccccc}1 & -2 & 3 & 0 & 29 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \quad \begin{array}{cc}x_{1}=2 x_{2}-3 x_{3}-29 x_{5} \\ x_{4}=-4 x_{5} & \\ x_{6}=0\end{array}$. The basic variables are x_{1}, x_{4}, and x_{6}.
The free variables are x_{2}, x_{3}, and x_{5}. The solution in parametric vector form is:
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-29 \\ 0 \\ 0 \\ -4 \\ 1 \\ 0\end{array}\right]$.

As vectors, this line is $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$, which is a line through $\left[\begin{array}{c}-5 \\ 2 \\ 0\end{array}\right]$ parallel to $\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$.
Page 47, Problem 15:

First, realize that the second equation is the first equation shifted by 2 . Solving the first equation for x_{1} results in
$x_{1}=-5 x_{2}+3 x_{3}$. In vector form, this is the same as $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$, which is a plane
through the origin spanned by $\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$. The solution to the second equation is:
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right]$, which is a parallel plane through $\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right]$ instead of $\mathbf{0}$.
Page 47, Problem 18:
The system as an augmented matrix is $\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 2 & 1 & -3 & 13 \\ -1 & 1 & 0 & -8\end{array}\right]$ and row reduction yields: $\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & -3 & 3 & 3 \\ 0 & 3 & -3 & -3\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}1 & 0 & -1 & 7 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$, the parametric solution being $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{c}7 \\ -1 \\ 0\end{array}\right]$.
This solution is a line through $\left[\begin{array}{c}7 \\ -1 \\ 0\end{array}\right]$, parallel to the line that is the solution to the homogenous equation in Exercise 6.
Page 48, Problem 35:

By inspection, the second column of $A, \mathbf{a}_{2}=3 \mathbf{a}_{1}$. Therefore, one nontrivial (not $\mathbf{0}$) solution is
$\mathbf{x}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ or $\mathbf{x}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
Page 48, Problem 38:

By Theorem 5b on page $39, A(c \mathbf{w})=c A \mathbf{w}$. Since \mathbf{w} satisfies $\mathrm{Ax}=\mathbf{0}, \mathrm{Aw}=\mathbf{0}$. So, $c A \mathbf{w}=c \mathbf{0}=\mathbf{0}$, so $A(c \mathbf{w})=\mathbf{0}$.

Section 2.1

Page 100, Problem 3:
To begin, $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] .3 I_{2}-A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]-\left[\begin{array}{cc}2 & -5 \\ 3 & -2\end{array}\right]=\left[\begin{array}{cc}1 & 5 \\ -3 & 5\end{array}\right]$ and
$\left(3 I_{2}\right) A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}2 & -5 \\ 3 & -2\end{array}\right]=\left[\begin{array}{cc}6 & -15 \\ 9 & -6\end{array}\right]$
a. $A \mathbf{b}_{1}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}-10 \\ 0 \\ 26\end{array}\right] \quad A \mathbf{b}_{2}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]=\left[\begin{array}{c}11 \\ 8 \\ -19\end{array}\right]$ So, $A B=\left[\begin{array}{cc}-10 & 11 \\ 0 & 8 \\ 26 & -19\end{array}\right]$
b. $A B=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right]=\left[\begin{array}{cc}-1(4)+3(-2) & -1(-2)+3(3) \\ 2(4)+4(-2) & 2(-2)+4(3) \\ 5(4)+-3(-2) & 5(-2)+-3(3)\end{array}\right]=\left[\begin{array}{cc}-10 & 11 \\ 0 & 8 \\ 26 & -19\end{array}\right]$

Page 100, Problem 6:
a. $A \mathbf{b}_{1}=\left[\begin{array}{cc}4 & -3 \\ -3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}-5 \\ 12 \\ 3\end{array}\right] \quad A \mathbf{b}_{2}=\left[\begin{array}{cc}4 & -3 \\ -3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}22 \\ -22 \\ -2\end{array}\right]$ So, $A B=\left[\begin{array}{cc}-5 & 22 \\ 12 & -22 \\ 3 & -2\end{array}\right]$
b. $A B=\left[\begin{array}{cc}4 & -3 \\ -3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ 3 & -2\end{array}\right]=\left[\begin{array}{cc}4(1)+-3(3) & 4(4)+-3(-2) \\ -3(1)+5(3) & -3(4)+5(-2) \\ 0(1)+1(3) & 0(4)+1(-2)\end{array}\right]=\left[\begin{array}{cc}-5 & 22 \\ 12 & -22 \\ 3 & -2\end{array}\right]$

Page 100, Problem 12:
Because A is 2 x 2 and B is 2 x 2 , our new matrix of all zeros will also be 2 x 2 . Essentially, we want to solve

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -6 \\
-2 & 4
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { with non-zero columns. Multiplying these matrices results in a linear system: }} \\
& \begin{array}{l}
3 a-6 c=0 \\
3 b-6 d=0 \\
-2 a+4 c=0 \\
-2 b+4 d=0
\end{array} \\
& \begin{array}{l}
3 a-6 c=0
\end{array} \text { which can be broken into two separate systems: } \begin{array}{c}
3 a-6 d=0 \\
-2 a+4 c=0
\end{array} \begin{array}{l}
3 b+4 d=0 \\
-2 b+
\end{array}
\end{aligned}
$$

Using row reduction, $\left[\begin{array}{ccc}3 & -6 & 0 \\ -2 & 4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 0 & 0\end{array}\right]$ so $a=2 c$ and $b=2 d$. Answers will vary.
An example is $c=1, d=1$ so $a=b=2:\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$.
Page 101, Problem 24:
Remember, $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Let $D=\left[\begin{array}{lll}\mathbf{d}_{1} & \mathbf{d}_{2} & \mathbf{d}_{3}\end{array}\right]$. By definition of matrix multiplication, the columns of $A D$ are equivalent to $A \mathbf{d}_{1}, A \mathbf{d}_{2}$, and $A \mathbf{d}_{3}$, respectively. In order for $A D=I_{3}$, the systems generated by $A \mathbf{d}_{1}, A \mathbf{d}_{2}$, and $A \mathbf{d}_{3}$ must each have at least one solution. Since the columns of A span \mathbb{R}^{3}, each of theses systems do have at least one solution (see Theorem 4 in Section 1.4). So, the matrix D is found by selecting one of the solutions from each of the systems $\left(A \mathbf{d}_{1}, A \mathbf{d}_{2}\right.$, and $\left.A \mathbf{d}_{3}\right)$ and using it as the columns of D.

Page 101, Problem 26:

Let $\mathbf{b} \in \mathbb{R}^{\mathrm{m}}$ be arbitrary (\mathbf{b} is an $\mathrm{m} \times 1$ matrix or vector). Assume $A D=I_{m}$ is true. Then, multiplying by \mathbf{b} yields $A D \mathbf{b}=I_{m} \mathbf{b}$, which implies $A D \mathbf{b}=\mathbf{b}$ (in matrix algebra I_{m} is treated like the number 1). Because the order of the
matrices is defined, $A(D \mathbf{b})=\mathbf{b}$ (by Theorem 2 of this section on page 97). The product $D \mathbf{b}$ is a vector which can be written as $\mathbf{x}=D \mathbf{b}$. So, $A \mathbf{x}=\mathbf{b}$ is true for every \mathbf{b} in \mathbb{R}^{m}. By Theorem 4 in Section 1.4 , since $A \mathbf{x}=\mathbf{b}$ is true for every \mathbf{b} in $\mathbb{R}^{\mathrm{m}}, A$ has a pivot position in every row. Because each pivot is in a different column, A must have at least as many columns as rows.

