MATH 221, Spring 2018 - Homework 10 Solutions

Due Tuesday, May 1

Section 5.2

Page 279, Problem 2:

- $A-\lambda I=\left[\begin{array}{cc}-4-\lambda & -1 \\ 6 & 1-\lambda\end{array}\right]$ and the characteristic polynomial is $\operatorname{det}(A-\lambda I)=(-4-\lambda)(1-\lambda)-(-1)(6)=\lambda^{2}+3 \lambda+2$
- The solutions to the equation $\lambda^{2}+3 \lambda+2=0$ are $\lambda=-1, \lambda=-2$.

Page 279, Problem 4:

- $A-\lambda I=\left[\begin{array}{cc}8-\lambda & 2 \\ 3 & 3-\lambda\end{array}\right]$ and the characteristic polynomial is $\operatorname{det}(A-\lambda I)=(8-\lambda)(3-\lambda)-(3)(2)=\lambda^{2}-11 \lambda+18$
- The solutions to $\lambda^{2}-11 \lambda+18=0$ are $\lambda=9, \lambda=2$.

Page 272, Problem 7:

- $A-\lambda I=\left[\begin{array}{cc}5-\lambda & 3 \\ -4 & 4-\lambda\end{array}\right]$ and the characteristic polynomial is $\operatorname{det}(A-\lambda I)=(5-\lambda)(4-\lambda)-(3)(-4)=\lambda^{2}-9 \lambda+32$
- The solutions to $\lambda^{2}-9 \lambda+32=0$ are found using the quadratic formula $\lambda=\frac{9 \pm \sqrt{9^{2}-4(1)(32)}}{2(1)} \Rightarrow \lambda=\frac{9}{2} \pm \frac{\sqrt{81-128}}{2}$. Because expression involves complex roots, there are no REAL eigenvalues.

Page 279, Problem 8:

- $A-\lambda I=\left[\begin{array}{cc}-4-\lambda & 3 \\ 2 & 1-\lambda\end{array}\right]$ and the characteristic polynomial is $\operatorname{det}(A-\lambda I)=(-4-\lambda)(1-\lambda)-(3)(2)=\lambda^{2}+3 \lambda-10$
- The solutions to $\lambda^{2}+3 \lambda-10=0$ are $\lambda=-5, \lambda=2$.

Page 280, Problem 25a:

- Because we know that $\mathbf{v}_{1}=\left[\begin{array}{l}3 / 7 \\ 4 / 7\end{array}\right]$ is an eigenvector, compute $A \mathbf{v}_{1}=\left[\begin{array}{ll}.6 & .3 \\ .4 & .7\end{array}\right]\left[\begin{array}{l}3 / 7 \\ 4 / 7\end{array}\right]=\left[\begin{array}{l}3 / 7 \\ 4 / 7\end{array}\right]$. So, $\lambda=1$ must be the eigenvalue corresponding to \mathbf{v}_{1}.
- To find the other eigenvector, find the eignevalues of the matrix: $A-\lambda I=\left[\begin{array}{cc}.6-\lambda & .3 \\ .4 & .7-\lambda\end{array}\right]$, so the characteristic polynomial is $\lambda^{2}-1.3 \lambda+0.3$ and the solutions to $\lambda^{2}-1.3 \lambda+0.3=0$ are $\lambda=1$ and $\lambda=.3$. Thus, the other eigenvector must correspond to $\lambda=.3$.
- To find the other eigenvector, solve $(A-.3 I) \mathbf{x}=\mathbf{0}$ for the general solution: $\left[\begin{array}{ccc}.3 & .3 & 0 \\ .4 & .4 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=$ $x_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Therefore, an eigenvector corresponding to $\lambda=.3$ is $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
- Because eigenvectors corresponding to different eigenvalues are linearly independent (and two non-zero linearly independent vectors in \mathbb{R}^{2} must also span $\left.\mathbb{R}^{2}\right)$, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{c}3 / 7 \\ 4 / 7\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}.

Page 280, Problem 25b:

- Solve for $c: \mathbf{x}_{0}=\mathbf{v}_{1}+c \mathbf{v}_{2} \Rightarrow \mathbf{x}_{0}-\mathbf{v}_{1}=c \mathbf{v}_{2}$. So, $\left[\begin{array}{l}.5 \\ .5\end{array}\right]-\left[\begin{array}{c}3 / 7 \\ 4 / 7\end{array}\right]=\left[\begin{array}{c}1 / 14 \\ -1 / 14\end{array}\right]=-\frac{1}{14}\left[\begin{array}{c}-1 \\ 1\end{array}\right]=-\frac{1}{14} \mathbf{v}_{2}$. So, $c=-\frac{1}{14}$ and $\mathbf{x}_{0}=\mathbf{v}_{1}-\frac{1}{14} \mathbf{v}_{2}$.

Page 280, Problem 25c:

- To begin, realize that $\mathbf{x}_{k}=A^{k} \mathbf{x}_{0}=A^{k}\left(\mathbf{v}_{1}-\frac{1}{14} \mathbf{v}_{2}\right)=A^{k} \mathbf{v}_{1}-A^{k} \frac{1}{14} \mathbf{v}_{2}=A^{k} \mathbf{v}_{1}-\frac{1}{14} A^{k} \mathbf{v}_{2}$.
- Then, $\mathbf{x}_{1}=A \mathbf{v}_{1}-\frac{1}{14} A \mathbf{v}_{2}$. Remember the definition of an eigenvector: if \mathbf{v} is an eigenvector corresponding to λ, then $A \mathbf{v}=\lambda \mathbf{v}$.
- Because \mathbf{v}_{1} is an eigenvector corresponding to $\lambda=1$ and \mathbf{v}_{2} is an eigenvector corresponding to $\lambda=.3$, this equation can be rewritten as $\mathbf{x}_{1}=1 \mathbf{v}_{1}-\frac{1}{14}\left(0.3 \mathbf{v}_{2}\right)=\left[\begin{array}{c}3 / 7 \\ 4 / 7\end{array}\right]+\left[\begin{array}{c}3 / 140 \\ -3 / 140\end{array}\right]=\left[\begin{array}{c}9 / 20 \\ 11 / 20\end{array}\right]$.
- Similarly, $\mathbf{x}_{2}=A^{2} \mathbf{v}_{1}-\frac{1}{14} A^{2} \mathbf{v}_{2}=A\left(A \mathbf{v}_{1}\right)-\frac{1}{14} A\left(A \mathbf{v}_{2}\right)=A\left(1 \mathbf{v}_{1}\right)-\frac{1}{14} A\left(.3 \mathbf{v}_{2}\right)=A \mathbf{v}_{1}-\frac{3}{14} A \mathbf{v}_{2}=1 \mathbf{v}_{1}-\frac{3}{14}\left(.3 \mathbf{v}_{2}\right)=$ $\mathbf{v}_{1}-\frac{1}{14}(0.3)^{2} \mathbf{v}_{2}$. This is equal to $\left[\begin{array}{c}3 / 7 \\ 4 / 7\end{array}\right]+\left[\begin{array}{c}9 / 1400 \\ -9 / 1400\end{array}\right]=\left[\begin{array}{c}87 / 200 \\ 113 / 200\end{array}\right]$.
- It is clear to see that that the formula for $\mathbf{x}_{k}=\mathbf{v}_{1}-\frac{1}{14}(0.3)^{k} \mathbf{v}_{2}$.
- As k gets larger (tends to infinity), (0.3) tends to 0 . Therefore, as $k \rightarrow \infty, \mathbf{x}_{k} \rightarrow \mathbf{v}_{1}$.

Section 5.3

Page 286, Problem 6:

A matrix A of the form $A=P D P^{-1}$ where D is a diagonal matrix consisting of the eigenvalues of A has vectors that form a basis for the eigenspace in the column of P that correspond to the eigenvalue in D. Therefore, the eigenvalues of A are 3 and 4. The vectors corresponding to $\lambda=3$ that forms a basis for the eigenspace are columns 1 and 3 of the matrix $P:\left\{\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -3 \\ 0\end{array}\right]\right\}$. The vector corresponding to $\lambda=4$ that forms a basis for the eigenspace is column 2 of the matrix $P:\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.

Page 286, Problem 7:

- To diagonalize the matrix, first find the eigenvalues: $\operatorname{det}(A-\lambda I)=(1-\lambda)(-1-\lambda)-6(0)=\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1$. Then, find a basis for each eigenspace.
- When $\lambda=1,(A-I) \mathbf{x}=\mathbf{0} \Rightarrow\left[\begin{array}{ccc}0 & 0 & 0 \\ 6 & -2 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -1 / 3 & 0 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=x_{2}\left[\begin{array}{c}1 / 3 \\ 1\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 3\end{array}\right]$. So, $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$ is a basis.
- When $\lambda=-1,(A+I) \mathbf{x}=\mathbf{0} \Rightarrow\left[\begin{array}{lll}2 & 0 & 0 \\ 6 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=x_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]$. So, $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is a basis.
- Then, these bases form the columns of P with the associated eigenvalue in the corresponding column of D (this is very important!): $P=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right], D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
- Because the eigenvalues are given, we just need to find a basis for each eigenspace. Note: Because there are only 2 distinct eigenvalues, the sum of the dimensions of the eigenspaces must equal 3 in order for A to be diagonalizable.
- When $\lambda=2,(A-2 I) \mathbf{x}=\mathbf{0} \Rightarrow\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=x_{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. So, $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis.
- When $\lambda=5,(A-5 I) \mathbf{x}=\mathbf{0} \Rightarrow\left[\begin{array}{cccc}-2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 1 & -2 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & 3 & -3 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cccc}1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=$ $x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. So, $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis.
- Then, these bases form the columns of P with the associated eigenvalue in the corresponding column of D (this is very important!): $P=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right], D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right]$.

Page 287, Problem 20:

- Because the matrix is triangular, the eigenvalues are the entries on the diagonal: $\lambda=2, \lambda=3$ (each with multiplicity 2). Note: Because there are only 2 distinct eigenvalues, the sum of the dimensions of the eigenspaces must equal 4 in order for A to be diagonalizable.
- When $\lambda=2,(A-2 I) \mathbf{x}=\mathbf{0} \Rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=x_{2}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$. So, $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis.
- When $\lambda=3,(A-3 I) \mathbf{x}=\mathbf{0} \Rightarrow\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \Rightarrow \mathbf{x}=x_{4}\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. So, $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis.
- Because the dimension of the basis corresponding to $\lambda=3$ is 1 and the basis corresponding to $\lambda=2$ is 2 and $1+2=3 \neq 4$, the matrix is not diagonalizable.

Page 287, Problem 21a:
True or False: A is diagonalizable if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
FALSE: The matrix D needs to be a diagonal matrix (the notation D does not automatically denote a diagonal matrix).

Page 287, Problem 21b:
True or False: If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diaognalizable.

TRUE: Because A is an $n \times n$ matrix (stated in the directions), this statement is true and follows from the Diagonalization

Theorem on page 282.

Section 6.1

Page 336, Problem 2:

- $\mathbf{w} \cdot \mathbf{w}=3(3)+-1(-1)+-5(-5)=9+1+25=35$
- $\mathbf{x} \cdot \mathbf{w}=6(3)+-2(-1)+3(-5)=18+2-15=5$
- $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}=\frac{5}{35}=\frac{1}{7}$

Page 336, Problem 7:

- $\|\mathbf{w}\|=\sqrt{\mathbf{w} \cdot \mathbf{w}}=\sqrt{35}$

Page 336, Problem 10:

- First, compute the norm of the vector: $\sqrt{-6(-6)+4(4)+-3(-3)}=\sqrt{36+16+9}=\sqrt{61}$
- Then, normalize the vector (multiply by the scalar $\frac{1}{\sqrt{61}}:\left[\begin{array}{c}-6 / \sqrt{61} \\ 4 / \sqrt{61} \\ -3 / \sqrt{61}\end{array}\right]$

Page 336, Problem 14:

- First find $\mathbf{u}-\mathbf{z}=\left[\begin{array}{c}4 \\ -4 \\ -6\end{array}\right]$
- use the formula $\operatorname{dist}(\mathbf{u}, \mathbf{z})=\|\mathbf{u}-\mathbf{z}\|=\sqrt{(\mathbf{u}-\mathbf{z}) \cdot(\mathbf{u}-\mathbf{z})}=\sqrt{4(4)+-4(-4)+-6(-6)}=\sqrt{68}=2 \sqrt{17}$

Page 336, Problem 16:

- Vectors are orthogonal if the dot product of the vectors equals zero.
- Compute $\mathbf{u} \cdot \mathbf{v}=12(2)+3(-3)+-5(3)=0$. So, the vectors are orthogonal.

Page 336, Problem 17:

- $\mathbf{u} \cdot \mathbf{v}=3(-4)+2(1)+-5(-2)+0(6)=0$. So, the vectors are orthogonal.

Page 337, Problem 20a:

True or False: $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$

TRUE: By Theorem 1, $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$, so by substitution $\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v}=0$.

Page 337, Problem 20b:

True or False: For any scalar $c,\|c \mathbf{v}\|=c\|\mathbf{v}\|$
FALSE: As stated on page 331, $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.

Page 337, Problem 20c:

True or False: If \mathbf{x} is orthogonal to every vector in a subspace W, then \mathbf{x} is in W^{\perp}.

TRUE: This statement follows from the definition of Orthogonal Complements on page 334 (here, the set that spans W is W itself).

Page 337, Problem 20d:

True or False: For any scalar $c,\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then uand \mathbf{v} are orthogonal.

TRUE: This statement is part of Theorem 2 in this section (the Pythagorean Theorem).
Page 337, Problem 20e:
True or False: For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.

TRUE: This statement is part of Theorem 3 of this section.
Page 337, Problem 23:

- $\mathbf{u} \cdot \mathbf{v}=2(-7)+-5(-4)+-1(6)=0$
- $\|\mathbf{u}\|^{2}=\mathbf{u} \cdot \mathbf{u}=2(2)+-5(-5)+-1(-1)=30$
- $\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}=-7(-7)+-4(-4)+6(6)=101$
- $\|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=-5(-5)+-9(-9)+5(5)=131$

Page 337, Problem 31:
Suppose \mathbf{x} is in both W and W^{\perp}. Because W spans W and $\mathbf{x} \in W$, xis orthogonal to every vector in W (by definition of orthogonal complements). Because \mathbf{x} is orthogonal to every vector in W, that means $\mathbf{x} \cdot \mathbf{x}=0$, which implies $\mathbf{x}=0$ (by Theorem 1).

