## Greg Friedman

Linear Algebra Proof

Given expression: t A + (1-t) B
parameters: $0 \leq t \leq 1, A$ and $B$ are each distinct points on the $x-y$ plane.
Let $A=(x 1, y 1)$ and $B=(x 2, y 2)$
My Claim: Given expression $=C=$ line segment with endpoints $A$ and $B$.
Proof: The given expression is a set of linear combinations of points $A$ and $B$ which will result in a set of points. C is defined as this set of points.

$$
t A+(1-t) B=\{x, y\}=C
$$

Where any one point in $C$ is calculated as $(x, y)$ where:
$x=t(x 1)+(1-t) x 2$
$y=t(y 1)+(1-t) y 2$
In the above expression $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1$ and y 2 are constants.
Notice that the variable, $t$, has the same relationship with $x$ as it does with $y$. The only difference between calculating $x$ and $y$ are the given constants. Furthermore, $t$ has a linear relationship with its constants.

With any two points in C labeled ( $x^{\prime}, y^{\prime}$ ) and ( $x^{\prime \prime}, y^{\prime \prime}$ ):

$$
\left(y^{\prime \prime}-y^{\prime}\right) /\left(x^{\prime \prime}-x^{\prime}\right)=\text { constant }
$$

Thus there is a constant slope for the set of points in C and C must be a line. More specifically, $C$ must be a line segment because $t$ has parameters.

The endpoints of $C$ are the extremes of the parameters of $t$.
For $t=0: C=B$
For $t=1: C=A$
Therefore $C$ is a line segment connecting points $A$ and $B$.

