MATH 221, Spring 2016 - Homework 9 Solutions

Due Tuesday, April 26

Section 6.1

Page 336, Problem 2:

- $\mathbf{w} \cdot \mathbf{w}=3(3)+-1(-1)+-5(-5)=9+1+25=35$
- $\mathbf{x} \cdot \mathbf{w}=6(3)+-2(-1)+3(-5)=18+2-15=5$
- $\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}=\frac{5}{35}=\frac{1}{7}$

Page 336, Problem 7:

- $\|\mathbf{w}\|=\sqrt{\mathbf{w} \cdot \mathbf{w}}=\sqrt{35}$

Page 336, Problem 10:

- First, compute the norm of the vector: $\sqrt{-6(-6)+4(4)+-3(-3)}=\sqrt{36+16+9}=\sqrt{61}$
- Then, normalize the vector (multiply by the scalar $\frac{1}{\sqrt{61}}:\left[\begin{array}{c}-6 / \sqrt{61} \\ 4 / \sqrt{61} \\ -3 / \sqrt{61}\end{array}\right]$

Page 336, Problem 14:

- First find $\mathbf{u}-\mathbf{z}=\left[\begin{array}{c}4 \\ -4 \\ -6\end{array}\right]$
- use the formula $\operatorname{dist}(\mathbf{u}, \mathbf{z})=\|\mathbf{u}-\mathbf{z}\|=\sqrt{(\mathbf{u}-\mathbf{z}) \cdot(\mathbf{u}-\mathbf{z})}=\sqrt{4(4)+-4(-4)+-6(-6)}=\sqrt{68}=2 \sqrt{17}$

Page 336, Problem 16:

- Vectors are orthogonal if the dot product of the vectors equals zero.
- Compute $\mathbf{u} \cdot \mathbf{v}=12(2)+3(-3)+-5(3)=0$. So, the vectors are orthogonal.

Page 336, Problem 17:

- $\mathbf{u} \cdot \mathbf{v}=3(-4)+2(1)+-5(-2)+0(6)=0$. So, the vectors are orthogonal.

Page 337, Problem 20a:

True or False: $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$

TRUE: By Theorem 1, $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$, so by substitution $\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v}=0$.
Page 337, Problem 20b:

True or False: For any scalar $c,\|c \mathbf{v}\|=c\|\mathbf{v}\|$
FALSE: As stated on page 331, $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.

True or False: If \mathbf{x} is orthogonal to every vector in a subspace W, then \mathbf{x} is in W^{\perp}.

TRUE: This statement follows from the definition of Orthogonal Complements on page 334 (here, the set that spans W is W itself).

Page 337, Problem 20d:
True or False: For any scalar $c,\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then uand \mathbf{v} are orthogonal.

TRUE: This statement is part of Theorem 2 in this section (the Pythagorean Theorem).
Page 337, Problem 20e:

True or False: For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
TRUE: This statement is part of Theorem 3 of this section.
Page 337, Problem 23:

- $\mathbf{u} \cdot \mathbf{v}=2(-7)+-5(-4)+-1(6)=0$
- $\|\mathbf{u}\|^{2}=\mathbf{u} \cdot \mathbf{u}=2(2)+-5(-5)+-1(-1)=30$
- $\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}=-7(-7)+-4(-4)+6(6)=101$
- $\|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=-5(-5)+-9(-9)+5(5)=131$

Page 337, Problem 31:
Suppose \mathbf{x} is in both W and W^{\perp}. Because W spans W and $\mathbf{x} \in W$, xis orthogonal to every vector in W (by definition of orthogonal complements). Because \mathbf{x} is orthogonal to every vector in W, that means $\mathbf{x} \cdot \mathbf{x}=0$, which implies $\mathbf{x}=0$
(by Theorem 1).

Section 6.2

Page 344, Problem 3:

- To determine if the set is orthogonal, compute the dot product of each pair of vectors:
- $\left[\begin{array}{c}-6 \\ -3 \\ 9\end{array}\right] \cdot\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]=-6(3)+-3(1)+9(-1)=-18-3-9=-30 \neq 0$
- Because at least one of the pairs of vectors is not orthogonal, the set of vectors is not orthogonal.

Page 345, Problem 8:

- First, compute $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=3(-2)+1(6)=-6+6=0$, which shows $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is orthogonal.
- Because neither \mathbf{u}_{1} or \mathbf{u}_{2} are nonzero and $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is orthogonal, $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is linearly independent, and hence a basis for \mathbb{R}^{2} (by Theorem 4 of this section)
- To express \mathbf{x} as a linear combination of \mathbf{u}_{1} and \mathbf{u}_{2}, we can use Theorem 5 to find the coefficients of \mathbf{u}_{1} and \mathbf{u}_{2} :
- $c_{1}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}=\frac{-6(3)+3(1)}{3(3)+1(1)}=\frac{-18+3}{9+1}=\frac{-15}{10}=-\frac{3}{2}$
- $c_{1}=\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}=\frac{-6(-2)+3(6)}{-2(-2)+6(6)}=\frac{12+18}{4+36}=\frac{30}{40}=\frac{3}{4}$
- So, $\mathbf{x}=-\frac{3}{2} \mathbf{u}_{1}+\frac{3}{4} \mathbf{u}_{2}$
- Let $\mathbf{y}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$. Use the formula on page 340 to compute the orthogonal projection of \mathbf{y} onto \mathbf{u} :
- $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{1(-1)+-1(3)}{-1(-1)+3(3)} \mathbf{u}=\frac{-4}{10} \mathbf{u}=-\frac{2}{5} \mathbf{u}=\left[\begin{array}{c}2 / 5 \\ -6 / 5\end{array}\right]=\left[\begin{array}{c}0.4 \\ -1.2\end{array}\right]$

Page 345, Problem 13:

- This problem is like Example 3 in the book. First, find the orthogonal projection of \mathbf{y} onto $\mathbf{u}: \hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{2(4)+3(-7)}{4(4)+-7(-7)} \mathbf{u}=$ $\frac{-13}{65} \mathbf{u}=\left[\begin{array}{c}-56 / 65 \\ 91 / 65\end{array}\right]=\left[\begin{array}{c}-4 / 5 \\ 7 / 5\end{array}\right]$
- The component of \mathbf{y} orthogonal to \mathbf{u} is: $\mathbf{y}-\hat{\mathbf{y}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]-\left[\begin{array}{c}-4 / 5 \\ 7 / 5\end{array}\right]=\left[\begin{array}{c}14 / 5 \\ 8 / 5\end{array}\right]$
- Therefore, $\mathbf{y}=\hat{\mathbf{y}}+(\mathbf{y}-\hat{\mathbf{y}})=\left[\begin{array}{c}-4 / 5 \\ 7 / 5\end{array}\right]+\left[\begin{array}{c}14 / 5 \\ 8 / 5\end{array}\right]$

Page 345, Problem 16:

- This problem is like Example 4 in the book. First, find the orthogonal projection of \mathbf{y} onto $\mathbf{u}: \hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{-3(1)+9(2)}{1(1)+2(2)} \mathbf{u}=$ $\frac{15}{5} \mathbf{u}=\left[\begin{array}{l}3 \\ 6\end{array}\right]$
- The component of \mathbf{y} orthogonal to \mathbf{u} is: $\mathbf{y}-\hat{\mathbf{y}}=\left[\begin{array}{c}-3 \\ 9\end{array}\right]-\left[\begin{array}{l}3 \\ 6\end{array}\right]=\left[\begin{array}{c}-6 \\ 3\end{array}\right]$
- The distance from \mathbf{y} to the line containing \mathbf{u} and the origin is the distance of this orthogonal component: $\|\mathbf{y}-\hat{\mathbf{y}}\|=$ $\sqrt{(-6)^{2}+3^{2}}=\sqrt{45}=3 \sqrt{5}$

Page 345, Problem 20:

- It is clear that the set of vectors is orthogonal because $\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right] \cdot\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ 0\end{array}\right]=-\frac{2}{3}+\frac{2}{3}+0=0$.
- The SET is NOT ORTHONORMAL because the length of the second vector is $\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}=\sqrt{\frac{5}{9}} \neq 1$
- The first vector is orthonormal because its length is $\sqrt{\left(-\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}=\sqrt{\frac{9}{9}}=1$.
- To normalize the first vector, simply multiply by $\frac{1}{\sqrt{\frac{5}{9}}}=\frac{3}{\sqrt{5}}$ to produce the orthonormal set: $\left\{\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{c}1 / \sqrt{5} \\ 2 / \sqrt{5} \\ 0\end{array}\right]\right\}$

Page 345, Problem 23a:
True or False: Not every linearly independent set in \mathbb{R}^{n} is an orthogonal set.
TRUE: Any counterexample such as the set $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, which is linearly independent in \mathbb{R}^{2} but not orthogonal.

Page 345, Problem 23e:
True or False: If L is a line through $\mathbf{0}$ and if $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from y to L.

FALSE: As it was used in the previous exercises and shown in Example 4 of the text, the distance is $\|\mathbf{y}-\hat{\mathbf{y}}\|$.

True or False: Not every orthogonal set in \mathbb{R}^{n} is linearly independent.

TRUE: Every nonzero orthogonal set in \mathbb{R}^{n} is linearly independent (Theorem 4).

Page 345, Problem 24b:

True or False: If a set $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ has the property that $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ whenever $i \neq j$, then S is an orthonormal set.
FALSE: This is the definition of an orthogonal set (in order to be an orthonormal set, the vectors must be unit vectors).

Page 345, Problem 24c:

True or False: If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A \mathbf{x}$ preserves lengths.

TRUE: See the paragraph after Theorem 7, which states that the linear mappin preserves lengths and orthogonality.

Page 345, Problem 24d:

True or False: The orthogonal projection of \mathbf{y} onto \mathbf{v} is the same as the orthogonal projection of \mathbf{y} onto $c \mathbf{v}$ whenever $c \neq 0$.

TRUE: This is explicitly stated in the text on page 340 in the paragraph before the definition of the orthogonal projection.

Page 345, Problem 24e:

True or False: An orthogonal matrix is invertible.

TRUE: By definition of an orthogonal matrix (page 344), it must be invertible.

Section 6.3

Page 352, Problem 4:

- To verify the vectors form an orthogonal set compute the dot product: $\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right] \cdot\left[\begin{array}{c}-4 \\ 3 \\ 0\end{array}\right]=3(-4)+4(3)+0(0)=0$
- The orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{6(3)+3(4)+-2(0)}{3(3)+4(4)+0(0)} \mathbf{u}_{1}+\frac{6(-4)+3(3)+-2(0)}{-4(-4)+3(3)+0(0)} \mathbf{u}_{2}$.

So, $\hat{\mathbf{y}}=\frac{30}{25} \mathbf{u}_{1}+\frac{-15}{25} \mathbf{u}_{2}=\frac{6}{5}\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]+\frac{-3}{5}\left[\begin{array}{c}-4 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}6 \\ 3 \\ 0\end{array}\right]$
Page 352, Problem 5:

- To verify the vectors form an orthogonal set compute the dot product: $\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right] \cdot\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right]=3(1)+-1(-1)+2(-2)=0$
- The orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{-1(3)+2(-1)+6(2)}{3(3)+-1(-1)+2(2)} \mathbf{u}_{1}+\frac{-1(1)+2(-1)+6(-2)}{1(1)+-1(-1)+-2(-2)} \mathbf{u}_{2}$. So, $\hat{\mathbf{y}}=\frac{7}{14} \mathbf{u}_{1}+\frac{-15}{6} \mathbf{u}_{2}=\frac{1}{2}\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]+\frac{-5}{2}\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right]=\left[\begin{array}{c}-1 \\ 2 \\ 6\end{array}\right]$
- To verify the vectors form an orthogonal set compute the dot product: $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]=1(-1)+1(3)+1(-2)=0$
- The orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{-1(1)+4(1)+3(1)}{1(1)+1(1)+1(1)} \mathbf{u}_{1}+\frac{-1(-1)+4(3)+3(-2)}{-1(-1)+3(3)+-2(-2)} \mathbf{u}_{2}$.

So, $\hat{\mathbf{y}}=\frac{6}{3} \mathbf{u}_{1}+\frac{7}{14} \mathbf{u}_{2}=2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]=\left[\begin{array}{c}3 / 2 \\ 7 / 2 \\ 1\end{array}\right]$

- By the Orthogonal Decomposition Theorem, $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\mathbf{z}=(\mathbf{y}-\hat{\mathbf{y}})=\left[\begin{array}{c}-1 \\ 4 \\ 3\end{array}\right]-\left[\begin{array}{c}3 / 2 \\ 7 / 2 \\ 1\end{array}\right]=\left[\begin{array}{c}-5 / 2 \\ 1 / 2 \\ 2\end{array}\right]$ is orthogonal to W.

Page 352, Problem 9:

- To verify the vectors form an orthogonal set compute the dot product of each pair of vectors: $1(-1)+1(3)+0(1)+1(2)=0,\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 1\end{array}\right]=1(-1)+1(0)+0(1)+1(1)=0,\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ -2\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 1\end{array}\right]=-1(-1)+3(0)+$ $1(1)+-2(1)=0$
- The orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{y} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}=\frac{4(1)+3(1)+3(0)+-1(1)}{1(1)+1(1)+0(0)+1(1)} \mathbf{u}_{1}+$ $\frac{4(-1)+3(3)+3(1)+-1(-2)}{-1(-1)+3(3)+1(1)+-2(-2)} \mathbf{u}_{2}+\frac{4(-1)+3(0)+3(1)+-1(1)}{-1(-1)+0(0)+1(1)+1(1)}$. So, $\hat{\mathbf{y}}=\frac{6}{3} \mathbf{u}_{1}+\frac{10}{15} \mathbf{u}_{2}+\frac{-2}{3}=2\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]+\frac{2}{3}\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ -2\end{array}\right]+\frac{-2}{3}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 1\end{array}\right]=$ $\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 0\end{array}\right]$
- By the Orthogonal Decomposition Theorem, $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\mathbf{z}=(\mathbf{y}-\hat{\mathbf{y}})=\left[\begin{array}{c}4 \\ 3 \\ 3 \\ -1\end{array}\right]-\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ -1\end{array}\right]$ is orthogonal to W.

Page 352, Problem 11:

- First, verify the vectors form an orthogonal set: $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=3(1)+1(-1)+-1(1)+1(-1)=0$
- Because \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal, the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_{1} and \mathbf{v}_{2} is $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{\mathbf { v } _ { 1 }}+\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{\mathbf { v } _ { 2 }}$ (by the Best Approximation Theorem).
- Therefore, $\hat{\mathbf{y}}=\frac{3(3)+1(1)+5(-1)+1(1)}{3(3)+1(1)+-1(-1)+1(1)} \mathbf{v}_{1}+\frac{3(1)+1(-1)+5(1)+1(-1)}{1(1)+-1(-1)+1(1)+-1(-1)} \mathbf{v}_{2}=\frac{6}{12} \mathbf{v}_{1}+\frac{6}{4} \mathbf{v}_{2}=\left[\begin{array}{c}3 \\ -1 \\ 1 \\ -1\end{array}\right]$
- First, verify the vectors form an orthogonal set: $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=1(-4)+-2(1)+-1(0)+2(3)=0$
- Because \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal, the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_{1} and \mathbf{v}_{2} is $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$ (by the Best Approximation Theorem).
- Therefore, $\hat{\mathbf{y}}=\frac{3(1)+-1(-2)+1(-1)+13(2)}{1(1)+-2(-2)+-1(-1)+2(2)} \mathbf{v}_{1}+\frac{3(-4)+-1(1)+1(0)+13(3)}{-4(-4)+1(1)+0(0)+3(3)} \mathbf{v}_{2}=\frac{30}{10} \mathbf{v}_{1}+\frac{26}{26} \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ -5 \\ -3 \\ 9\end{array}\right]$

Page 353, Problem 21a:

True or False: If \mathbf{z} is orthogonal to \mathbf{u}_{1} and to \mathbf{u}_{2} and if $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then \mathbf{z} must be in W^{\perp}.
TRUE: This is true by definition of orthogonal complements (see Section 6.1) and is discussed in Example 1 of this section.

Page 353, Problem 21b:
True or False: For each \mathbf{y} and each subspace W, the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to W.

TRUE: This is true by the Orthogonal Decomposition Theorem.

Page 353, Problem 21c:

True or False: The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.

FALSE: This contradicts the statement in the text following Theorem 8 at the bottom of page 348.
Page 353, Problem 21d:
True or False: If \mathbf{y} is in a subspace W, then the orthogonal projection of \mathbf{y} onto W is \mathbf{y} itself.
TRUE: This property is explicitly stated on page 350.

Section 6.4

Page 336, Problem 5:
Use the process stated on page 355 :

- $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -4 \\ 0 \\ 1\end{array}\right]$
$\bullet \mathbf{v}_{2}=\left[\begin{array}{c}7 \\ -7 \\ -4 \\ 1\end{array}\right]-\frac{7(1)+-7(-4)+-4(0)+1(1)}{1(1)+-4(-4)+0(0)+1(1)}\left[\begin{array}{c}1 \\ -4 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}7 \\ -7 \\ 4 \\ 1\end{array}\right]-\frac{36}{18}\left[\begin{array}{c}1 \\ -4 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ 1 \\ -4 \\ -1\end{array}\right]$
- Thus, an orthogonal basis for W is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$

Just make the columns of the matrix into an orthogonal basis using the G-S Process:

- $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1\end{array}\right]$
- $\mathbf{v}_{2}=\left[\begin{array}{c}2 \\ 1 \\ 4 \\ -4 \\ 2\end{array}\right]-\frac{2(1)+1(-1)+4(-1)+-4(1)+2(1)}{1(1)+-1(-1)+-1(-1)+1(1)+1(1)}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 \\ 1 \\ 4 \\ -4 \\ 2\end{array}\right]-\frac{-5}{5}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}3 \\ 0 \\ 3 \\ -3 \\ 3\end{array}\right]$
- $\left.\mathbf{v}_{3}=\left[\begin{array}{c}5 \\ -4 \\ -3 \\ 7 \\ 1\end{array}\right]-\frac{5(1)+-4(-1)+-3(-1)+7(1)+1(1)}{1(1)+-1(-1)+-1(-1)+1(1)+1(1)}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1\end{array}\right]-\frac{5(3)+-4(0)+-3(3)+7(-3)+1(3)}{3(3)+0(0)+3(3)+-3(-3)+3(3)}\left[\begin{array}{c}3 \\ 0 \\ 3 \\ -3 \\ 3\end{array}\right]=\left[\begin{array}{c}5 \\ -4 \\ -3 \\ 7 \\ 1\end{array}\right] \begin{array}{c} \\ -4 \\ -1 \\ -1 \\ 1 \\ 1\end{array}\right]-$

$$
\frac{-1}{3}\left[\begin{array}{c}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right]
$$

- Thus, an orthogonal basis for the columns space is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.

