MATH 221, Spring 2016 - Homework 7 Solutions

Due Tuesday, April 12

Section 4.4

Page 222, Problem 3:
Let $\mathcal{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]$. Then, $\mathbf{x}=1 \mathbf{b}_{1}+0 \mathbf{b}_{2}+-2 \mathbf{b}_{3}=1\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]+0\left[\begin{array}{c}5 \\ 0 \\ -2\end{array}\right]+-2\left[\begin{array}{c}4 \\ -3 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]+\left[\begin{array}{c}-8 \\ 6 \\ 0\end{array}\right]=\left[\begin{array}{c}-7 \\ 4 \\ 3\end{array}\right]$.
Page 222, Problem 7:
In this problem, we are solving the equation $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ for the coordinates
c_{1}, c_{2}, and c_{3}. In this problem, this equation is represented by $\left[\begin{array}{c}8 \\ -9 \\ 6\end{array}\right]=c_{1}\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]+c_{2}\left[\begin{array}{c}-3 \\ 4 \\ 9\end{array}\right]+c_{3}\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$, which
amounts to solving the augmented system $\left[\begin{array}{cccc}1 & -3 & 2 & 8 \\ -1 & 4 & -2 & -9 \\ -3 & 9 & 4 & 6\end{array}\right]$. Row-reducing yields $\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$.
So, $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right]$.
Page 223, Problem 10:
As stated in this section (on page 219), the matrix $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$ is the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^{n}. Therefore, $P_{\mathcal{B}}=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 2 & -2 \\ 6 & -4 & 3\end{array}\right]$.

Page 223, Problem 14:
Any polynomial $a+b t+c t^{2}$ in \mathbb{P}_{2} can be written in vector form as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Therefore, the set \mathcal{B} as a set of vectors is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$ and the vector \mathbf{p} is $\mathbf{p}=\left[\begin{array}{c}1 \\ 3 \\ -6\end{array}\right]$. Solve the augmented system $\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \\ -1 & -1 & 1 & -6\end{array}\right]$.
The solution in reduced-echelon form is $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1\end{array}\right]$, so $[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$.

Let $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}\end{array}\right]$ (which is an $n \times n$ matrix because its columns form a basis for \mathbb{R}^{n}). By definition, $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ which is a transformation of $[\mathbf{x}]_{\mathcal{B}}$ to \mathbf{x}. Because the columns of $P_{\mathcal{B}}$ are linearly independent (the form a basis for \mathbb{R}^{n}), $P_{\mathcal{B}}$ is invertible. Thus, left-side multiplication of $P_{\mathcal{B}}^{-1}$ results in $P_{\mathcal{B}}^{-1} \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$, which is a transformation of \mathbf{x} to $[\mathbf{x}]_{\mathcal{B}}$ $\left(\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}\right)$. Therefore, take $A=P_{\mathcal{B}}^{-1}$.

Section 4.4

Page 242, Problem 1:

- To find the change-of-coordinate matrix from \mathcal{B} to \mathcal{C}, we need to solve the systems $x_{1} \mathbf{c}_{1}+x_{2} \mathbf{c}_{2}=\mathbf{b}_{1}$ and $y_{1} \mathbf{c}_{1}+y_{2} \mathbf{c}_{2}=\mathbf{b}_{2}$ and form the matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right]$. In this problem, it is clear from the description that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{cc}6 & 9 \\ -2 & -4\end{array}\right]$.
- Because $\mathbf{x}=-3 \mathbf{b}_{1}+2 \mathbf{b}_{2},[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. So, $[\mathbf{x}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}6 & 9 \\ -2 & -4\end{array}\right]\left[\begin{array}{c}-3 \\ 2\end{array}\right]=\left[\begin{array}{c}0 \\ -2\end{array}\right]$.

Page 243, Problem 6:

- Using the same method as problem 1 (in more dimensions), it is clear that $\underset{\mathcal{D} \leftarrow \mathcal{F}}{P}=\left[\begin{array}{ccc}2 & 0 & -3 \\ -1 & 3 & 0 \\ 1 & 1 & 2\end{array}\right]$.
- As before, $[\mathbf{x}]_{\mathcal{F}}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$, so $[\mathbf{x}]_{\mathcal{D}}=\underset{\mathcal{D} \leftarrow \mathcal{F}}{\underset{P}{P}}[\mathbf{x}]_{\mathcal{F}}=\left[\begin{array}{ccc}2 & 0 & -3 \\ -1 & 3 & 0 \\ 1 & 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]=\left[\begin{array}{c}-4 \\ -7 \\ 3\end{array}\right]$

Page 243, Problem 9:

- To find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}, use the method described on page 241 , solving two systems simultaneously: $\left[\begin{array}{cc:cc}2 & -2 & 4 & 8 \\ 2 & 2 & 4 & 4\end{array}\right] \rightarrow\left[\begin{array}{cc:cc}1 & -1 & 2 & 4 \\ 1 & 1 & 2 & 2\end{array}\right] \rightarrow\left[\begin{array}{cc:cc}1 & 0 & 2 & 3 \\ 0 & 1 & 0 & -1\end{array}\right] \Rightarrow \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right]$.
- To find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}, use the same method, but change the order: $\left[\begin{array}{cccc}4 & 8 & 2 & -2 \\ 4 & 4 & 2 & 2\end{array}\right] \rightarrow$

$$
\left[\begin{array}{cc:cc}
2 & 4 & 1 & -1 \\
2 & 2 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc:cc}
1 & 0 & 0.5 & 1.5 \\
0 & 1 & 0 & -1
\end{array}\right] \Rightarrow \underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\left[\begin{array}{cc}
0.5 & 1.5 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{3}{2} \\
0 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 3 \\
0 & -2
\end{array}\right]
$$

Section 3.2

Page 175, Problem 20:
Transforming the matrix $\left[\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right]$ by $-R_{2}+R_{1} \rightarrow R_{1}$ yields $\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. Because $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=7$
and the only row-operations on the matrix were adding a multiple of a row, $\left|\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right|=7$.

Use row-operations to reduce the matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 3 & 0 \\
1 & 3 & 4 \\
1 & 2 & 1
\end{array}\right]: R_{3} \leftrightarrow R_{1}:\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 3 & 4 \\
2 & 3 & 0
\end{array}\right]:-R_{1}+R_{2} \rightarrow R_{2}:\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
2 & 3 & 0
\end{array}\right]:-2 R_{1}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & -1 & -2
\end{array}\right]:} \\
& R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] . \text { Thus, the determinant is }-1 \text { (because of the row-interchange at the beginning). }
\end{aligned}
$$

Because the determinant does not equal 0 , the matrix is invertible.
Page 175, Problem 22:

Use row-operations to reduce the matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5 & 0 & -1 \\
1 & -3 & -2 \\
0 & 5 & 3
\end{array}\right]: R_{1} \leftrightarrow R_{2}:\left[\begin{array}{ccc}
1 & -3 & -2 \\
5 & 0 & -1 \\
0 & 5 & 3
\end{array}\right]:-5 R_{1}+R_{2} \rightarrow R_{2}:\left[\begin{array}{ccc}
1 & -3 & -2 \\
0 & 15 & 9 \\
0 & 5 & 3
\end{array}\right]:} \\
& -\frac{1}{3} R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}
1 & 3 & -2 \\
0 & 15 & 9 \\
0 & 0 & 0
\end{array}\right] . \text { Because the determinant is equal to } 0 \text {, the matrix is not invertible. }
\end{aligned}
$$

Page 176, Problem 37:
Straightforward calculation of $\operatorname{det} A=3(1)-0(6)=3$ and $\operatorname{det} B=2(4)-0(5)=8$ shows that
$(\operatorname{det} A)(\operatorname{det} B)=3(8)=24$. The determinant of the matrix product $A B=\left[\begin{array}{cc}6 & 0 \\ 17 & 4\end{array}\right]$ is
$\operatorname{det} A B=6(4)-0(17)=24$. Thus, $24=\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)=24$.

Page 176, Problem 41:
Calculate each determinant: $\operatorname{det} A=(a+e)(d)-(b+f)(c)=a d+d e-b c-c f=a d-b c+e d-f c$, $\operatorname{det} B=a d-b c, \operatorname{det} C=e d-f c$. It is clear then that $\operatorname{det} A=\operatorname{det} B+\operatorname{det} C$

