MATH 221, Spring 2016 - Homework 6 Solutions

Due Tuesday, March 29

Section 4.3

Page 213, Problem 3:
The matrix whose columns are the given set of vectors is $\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & 1 & -1 \\ -3 & -4 & 1\end{array}\right]$, which reduces to $\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 5 & -5\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$.
Because there are only two pivot positions, the set of vectors are neither linearly independent nor span \mathbb{R}^{3}, thus the set of vectors do NOT form a basis of \mathbb{R}^{3}.

Page 213, Problem 8:

The matrix whose columns are the given set of vectors is $\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ -2 & 3 & -1 & 0 \\ 3 & -1 & 5 & -1\end{array}\right]$. Because there are four columns, the set cannot be linearly indpendent in \mathbb{R}^{3}. Thus, the set of vectors do NOT form a basis of \mathbb{R}^{3}.

To determine if the set of vectors span \mathbb{R}^{3}, row-reduce the matrix:
$\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ -2 & 3 & -1 & 0 \\ 3 & -1 & 5 & -1\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & -1 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
Because there is a pivot position in each row, the set of vectors do span \mathbb{R}^{3}.
Page 213, Problem 13:

To find a basis for $\operatorname{Col} A$, use Theorem 6 of this section. Notice that the pivot positions are in columns 1 and 2 (look at matrix B, which is in row echelon form). Use these columns from matrix A to form a basis. Therefore, a basis for $\operatorname{Col} A$
is $\left\{\left[\begin{array}{c}-2 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{c}4 \\ -6 \\ 8\end{array}\right]\right\}$. To find a basis for $\operatorname{Nul} A$, write the general solution to $A \mathbf{x}=\mathbf{0}$ in terms of the free variables
$\left(x_{3}\right.$ and $\left.x_{4}\right): \mathbf{x}=x_{3}\left[\begin{array}{c}-6 \\ -5 / 2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-5 \\ -3 / 2 \\ 0 \\ 1\end{array}\right]$. Thus a basis for $\operatorname{Nul} A$ is $\left\{\left[\begin{array}{c}-6 \\ -5 / 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-5 \\ -3 / 2 \\ 0 \\ 1\end{array}\right]\right\}$.

To find a basis for $\operatorname{Col} A$, use Theorem 6 of this section. Notice that the pivot positions are in columns 1,3 , and 5
(look at matrix B, which is in row echelon form). Use these columns from matrix A to form a basis. Therefore, a basis for
$\operatorname{Col} A$ is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{l}8 \\ 8 \\ 9 \\ 9\end{array}\right]\right\}$. To find a basis for Nul A, we need the general solution to $A \mathbf{x}=\mathbf{0}$ in terms of the
free variables $\left(x_{2}\right.$ and $\left.x_{4}\right)$. Because matrix B is only in row echelon form, reduce it to reduced row echelon form:

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 5 \\
0 & 0 & 3 & -6 & 3 \\
0 & 0 & 0 & 0 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \cdot \mathbf{x}=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1 \\
0
\end{array}\right] . \text { Thus a basis for NulA is }\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1 \\
0
\end{array}\right]\right\} .
$$

Page 214, Problem 21b:

True or False: If $H=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$, then $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for H.

FALSE: The set $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ must also be linearly independent.
Page 214, Problem 21c:

True or False: The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.

TRUE: Because the matrix is invertible, the columns span \mathbb{R}^{n} and are linearly independent (by the Invertible Matrix Theorem). Hence, the columns form a basis for \mathbb{R}^{n}.

Page 214, Problem 21d:

True or False: A basis is a spanning set that is as large as possible.

FALSE: A basis is a spanning set that is as small possible (read "Two Views of a Basis" on p. 212).
Page 214, Problem 22a:

True or False: A linearly independent set in a subspace H is a basis for H.

FALSE: In order to be a basis, the set must also span H (by definition).

Page 214, Problem 22b:
True or False: If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.

TRUE: By the Spanning Set Theorem, removing linearly dependent vectors in S will still result in a spanning set (this new set is a subset of S. Because the new set will eventually only contain linearly independent vectors, the set will be a basis for V.

True or False: If B is an echelon form of a matrix A, then the pivot columns of B form a basis for $\operatorname{Col} A$.
FALSE: The pivot columns in B tell which columns in matrix A form the basis for $\operatorname{Col} A$ (see the warning after Theorem 6 on page 212).

Page 214, Problem 25:
While it might seem that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a spanning set for H, it is not. Notice that H is a subset of $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Also, there are vectors in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ which are not in H, such as \mathbf{v}_{1} and \mathbf{v}_{3} (the second and third elements of these vectors are not equal). Therefore, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ does not $\operatorname{span} H$, so $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ cannot be a basis for H.

Page 215, Problem 33:

The polynomials are linearly independent because neither can be written as a scalar multiple of the other. As polynomials in \mathbb{P}_{3}, they can be written as vectors: $\mathbf{p}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{p}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]$, which as a matrix that is row-reduced is:
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right]$, indicating the only solution to $A \mathbf{x}=\mathbf{0}$ is the trivial solution (hence, the columns are linearly independent).

Section 4.5

Page 229, Problem 3:
Any vector in the subspace can be written as $a\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]+b\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 2\end{array}\right]+c\left[\begin{array}{c}2 \\ 0 \\ -3 \\ 0\end{array}\right]$. Thus, $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -3 \\ 0\end{array}\right]\right\}$ spans the subspace. To determine if this set is linearly independent, solve the matrix equation $\left[\begin{array}{ccc}0 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 2 & 0\end{array}\right] \mathbf{x}=\mathbf{0}$.

The matrix reduces to $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Thus, the only solution is the trivial solution, so the columns are linearly
independent. Therefore, a basis for the subspace is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -3 \\ 0\end{array}\right]\right\}$. Because there are three vectors
in the basis, the dimension of the subspace is 3 .

The equation can be rewritten as $a=3 b-c$. Thus, any vector $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ in the subspace can be written as
$b\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]+c\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+d\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. Thus, the set $\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ spans the subspace. It is clear that the set
is linearly independent, but to verify that, reduce the matrix formed by the column vectors
$A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, which shows the only solution to $A \mathbf{x}=\mathbf{0}$ is the trivial solution, so the columns
are linearly independent. Thus, a basis is $\left\{\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ with dimension 3.
Page 229, Problem 10:
Given $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 10\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 15\end{array}\right]$. It is clear that the set of these vectors is linearly dependent because $\mathbf{v}_{2}=-2 \mathbf{v}_{1}$ and $\mathbf{v}_{3}=-3 \mathbf{v}_{1}$. By the Spanning Set Theorem, the set $\left\{\mathbf{v}_{1}\right\}$ still spans \mathbb{R}^{2} and because the set is linearly independent, it is also a basis for \mathbb{R}^{2}, so the dimension is 1 .

Page 229, Problem 14:
Because there are three free variables, the dimension of $\operatorname{Nul} A$ is 3 and because there are four pivot positions, the dimension of $\operatorname{Col} A$ is 4 .

Page 229, Problem 15:

Because there are two free variables, the dimension of $\operatorname{Nul} A$ is 2 and because there are three pivot positions, the dimension of $\operatorname{Col} A$ is 3 .

Page 229, Problem 17:
Because there are no free variables, the dimension of $\operatorname{Nul} A$ is 0 and because there are three pivot positions, the dimension of $\operatorname{Col} A$ is 3 .

Page 229, Problem 19a:

True or False: The number of pivot columns of a matrix equals the dimension of its column space.

TRUE: This is stated in the box on page 228 before Example 5.

True or False: If $\operatorname{dim} V=n$ and S is a linearly independent set in V, then S is a basis for V.
FALSE: The set must have exactly n vectors to be a basis for V.

Page 229, Problem 20d:
True or False: If $\operatorname{dim} V=n$ and if S spans V, then S is a basis for V.
FALSE: The set must have exactly n vectors to be a basis for V.

Section 4.6

Page 236, Problem 2:

Because $\operatorname{rank} A=\operatorname{dim}(\operatorname{Col} A)$, and since there are 3 pivot positions, $\operatorname{rank} A=3$. Because A is a 4×5 matrix,
$\operatorname{dim}(\operatorname{Nul} A)+\operatorname{rank} A=5$. Thus, $\operatorname{dim}(\operatorname{Nul} A)=5-3=2$. The basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{c}4 \\ 6 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ -3 \\ 0\end{array}\right]\right\}$ and the basis for Row A is the set of non-zero rows of $B:\left\{\left[\begin{array}{c}1 \\ 3 \\ 4 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ -5\end{array}\right]\right\}$. To find the basis for Nul A,
reduce the matrix B to reduced-echelon form to find the solutions to the trivial equation:
$\left[\begin{array}{ccccc}1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 3 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, so $\mathbf{x}=x_{2}\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]$. So the basis for
$\operatorname{Nul} A$ is: $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$.
Page 236, Problem 3:
For the same reasons problem $4, \operatorname{rank} A=3$ and $\operatorname{dim}(\operatorname{Nul} A)=3$. The basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{c}2 \\ -2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{c}6 \\ -3 \\ 9 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 3 \\ 3\end{array}\right]\right\}$
and the basis for Row A is $\left\{\left[\begin{array}{c}2 \\ 6 \\ -6 \\ 6 \\ 3 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 3 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 0\end{array}\right]\right\}$. Reducing B results in
$\left[\begin{array}{cccccc}2 & 6 & -6 & 6 & 3 & 6 \\ 0 & 3 & 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & -3 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$, which implies $\mathbf{x}=x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{6}\left[\begin{array}{c}-3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$.
So, the basis for Nul A is $\left\{\left[\begin{array}{c}3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
Page 237, Problem 7:
Because A is a 4×7 matrix, $\operatorname{Col} A$ must be a subspace of \mathbb{R}^{4}. Since there are 4 pivot positions, it must be that $\operatorname{Col} A=\mathbb{R}^{4}$.
$\operatorname{Nul} A$ must be a three-dimensional subspace of \mathbb{R}^{7} (the vectors in Nul A have 7 entries). Therefore, Nul $A \neq \mathbb{R}^{3}$.

Page 237, Problem 8:
Because there are four pivot columns, $\operatorname{dim}(\operatorname{Col} A)=4$, so $\operatorname{dim}(\operatorname{Nul} A)=8-4=4$. It is impossible for $\operatorname{Col} A=\mathbb{R}^{4}$ because $\operatorname{Col} A$ is a subspace of \mathbb{R}^{6} (the vectors in $\operatorname{Col} A$ have 6 entries).

Page 237, Problem 9:

Because $\operatorname{dim}(\operatorname{Nul} A)=3$ and $n=6, \operatorname{dim}(\operatorname{Col} A)=6-3=3$. It is impossible for $\operatorname{Col} A=\mathbb{R}^{3}$ because $\operatorname{Col} A$ is a subspace of \mathbb{R}^{4} (the vectors in $\operatorname{Col} A$ have 4 entries).

Page 237, Problem 11:

Because $\operatorname{dim}(\operatorname{Nul} A)=3$ and $n=5, \operatorname{dim}(\operatorname{Row} A)=\operatorname{dim}(\operatorname{Col} A)=5-3=2$.
Page 237, Problem 18a:

True or False: If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.

FALSE: As before, the pivot columns in B tell which columns of A form a basis for the column space of A.
Page 237, Problem 18c:

True or False: The dimension of the null space of A is the number of columns of A that are not pivot columns.

TRUE: Because the number of columns of A that are pivot columns equals the rank of A, by the Rank Theorem, the number of columns of A that are not pivot columns must be the dimension of the null space of A (see the proof of the Rank Theorem on page 233).

Compute $A=\mathbf{u v}^{T}=\left[\begin{array}{c}2 \\ -3 \\ 5\end{array}\right]\left[\begin{array}{lll}a & b & c\end{array}\right]=\left[\begin{array}{ccc}2 a & 2 b & 2 c \\ -3 a & -3 b & -3 c \\ 5 a & 5 b & 5 c\end{array}\right]$. Each column of this matrix is a multiple of \mathbf{u}, so
$\operatorname{dim}(\operatorname{Col} A)=1$, unless $a=b=c=0$, in which case $\operatorname{dim}(\operatorname{Col} A)=0$. Because $\operatorname{dim}(\operatorname{Col} A)=\operatorname{rank} A, \operatorname{rankuv}^{\mathrm{T}}=\operatorname{rank} A \leq 1$.

Page 238, Problem 32:
Notice that the second row of the matrix is twice the first. Therefore, take $\mathbf{v}=\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right]$, so that

$$
\mathbf{u v}^{T}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & -3 & 4
\end{array}\right]=\left[\begin{array}{lll}
1 & -3 & 4 \\
2 & -6 & 8
\end{array}\right]
$$

