MATH 221, Spring 2016 - Homework 2 Solutions

Due Tuesday, February 16

Section 1.4

Page 40, Problem 2:

The product is not defined because the order of the matrix is 3 x 1 and the order of the vector is 2 x 1 . The number of columns of the first matrix (3) does not equal the number of entries of the vector (2).

Page 40, Problem 4:

The product is defined because the order of the matrix is 2 x 3 and the vector is 3 x 1 (so the number of columns (3) in the matrix is equal to the number of entries in the vector). The order of the product should be 2 x 1 , the number of rows of the matrix and the number of entries of the vector.
a. Using the definition, as in Example 1 on page 35:
$\left[\begin{array}{ccc}1 & 3 & -4 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=1\left[\begin{array}{l}1 \\ 3\end{array}\right]+2\left[\begin{array}{l}3 \\ 2\end{array}\right]+1\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]+\left[\begin{array}{l}6 \\ 4\end{array}\right]+\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
b. Using the row-vector rule (explained on page 38):
$\left[\begin{array}{ccc}1 & 3 & -4 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}1(1)+3(2)+-4(1) \\ 3(1)+2(2)+1(1)\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
Page 40, Problem 6:

This exercise is similar to part a of the problem 4, which is like Example 1. Use the elements of the vector as scalars for the columns of the matrix:
$-3 \cdot\left[\begin{array}{c}2 \\ 3 \\ 8 \\ -2\end{array}\right]+5 \cdot\left[\begin{array}{c}-3 \\ 2 \\ -5 \\ 1\end{array}\right]=\left[\begin{array}{c}-21 \\ 1 \\ -49 \\ 11\end{array}\right]$
Page 40, Problem 8:

This is similar to the previous exercise, but now write the column vectors as a 2 x 4 matrix, the scalars as a 4 x 1 column-vector, and keep the left-side of the equation as a two-column vector:
$\left[\begin{array}{cccc}2 & -1 & -4 & 0 \\ -4 & 5 & 3 & 2\end{array}\right]\left[\begin{array}{c}z_{1} \\ z_{2} \\ z_{3} \\ z_{4}\end{array}\right]=\left[\begin{array}{c}5 \\ 12\end{array}\right]$

Vector Equation: $x_{1}\left[\begin{array}{l}5 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 4\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$ Matrix Equation: $\left[\begin{array}{ccc}5 & 1 & -3 \\ 0 & 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$
Page 40, Problem 12:
Augmented Matrix: $\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ -3 & -4 & 2 & 2 \\ 5 & 2 & 3 & -3\end{array}\right]$ Row-Reduction: $\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 2 & -1 & 5 \\ 0 & -8 & 8 & -8\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 2 & -1 & 5 \\ 0 & 1 & -1 & 1\end{array}\right] \rightarrow$
$\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 2 & -1 & 5 \\ 0 & 0 & 1 & 3\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 4 \\ 0 & 2 & 0 & 8 \\ 0 & 0 & 1 & 3\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3\end{array}\right]$ The solution, as a vector: $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-4 \\ 4 \\ 3\end{array}\right]$
Page 40, Problem 13:

To answer this question, determine if \mathbf{u} is in the Span of these columns, determine if \mathbf{u} is a linear combination of the columns of A . That is, determine if $\mathrm{A} \mathbf{x}=\mathbf{u}$ has a solution. The augmented matrix is $\left[\begin{array}{ccc}3 & -5 & 0 \\ -2 & 6 & 4 \\ 1 & 1 & 4\end{array}\right]$ and row-reduction yields: $\left[\begin{array}{ccc}1 & 1 & 4 \\ 3 & -5 & 0 \\ -2 & 6 & 4\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 1 & 4 \\ 0 & -8 & -12 \\ 0 & 8 & 12\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$.

Because there is no pivot in the last column, a solution exists, so \mathbf{u} is in the plane in \mathbb{R}^{3} spanned by the columns of \mathbf{A}.

Page 41, Problem 35:
Assume $\mathbf{A y}=\mathbf{z}$ is true. Then, $5 \mathbf{z}=5 \mathrm{~A} \mathbf{y}=\mathrm{A}(5 \mathbf{y})$ (by Theorem 5 b on page 39). Let $\mathbf{x}=5 \mathbf{y}$. Then, $\mathbf{A x}=5 \mathbf{z}$ is also consistent.

Section 1.5

Page 47, Problem 2:
Use row operations on the augmented matrix: $\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ -2 & -3 & -4 & 0 \\ 2 & -4 & 9 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & -7 & 5 & 0\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & 0 & 3 & 0\end{array}\right]$. Because there is a pivot in every column of the coefficient matrix, there are no
free variables, so the system has only the trivial solution.

In order to solve this problem, put the matrix $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{0}\end{array}\right]$ (where \mathbf{a}_{1}, etc. are the columns of A) in reduced echelon form: $\left[\begin{array}{ccccc}1 & -3 & -8 & 5 & 0 \\ 0 & 1 & 2 & -4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & -2 & -7 & 0 \\ 0 & 1 & 2 & -4 & 0\end{array}\right]$, which is equivalent to the system $\begin{aligned} & x_{1}-2 x_{3}-7 x_{4}=0 \\ & x_{2}+2 x_{3}-4 x_{4}=0\end{aligned}$. It is clear that the basic variables are x_{1} and x_{2} while the free varaibles are x_{3} and x_{4}. Solving for the free variables results in: $\begin{gathered}x_{1}=2 x_{3}+7 x_{4} \\ x_{2}=-2 x_{3}+4 x_{4}\end{gathered}$. Writing in parametric vector form:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3}+7 x_{4} \\
-2 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
7 x_{4} \\
4 x_{4} \\
0 \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
4 \\
0 \\
1
\end{array}\right]
$$

Page 47, Problem 10:
This is the same process as problem 8 in this section: $\left[\begin{array}{ccccc}-1 & -4 & 0 & -4 & 0 \\ 2 & -8 & 0 & 8 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$,
$x_{1}=-4 x_{4}$
$x_{2}=0$. The basic variables are x_{1} and x_{2} while the free variables are x_{3} and x_{4}. The parametric vector
form is: $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ 1\end{array}\right]$.
Page 47, Problem 12:
This is the same process as the previous two problems: $\left[\begin{array}{ccccccc}1 & -2 & 3 & -6 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & -6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\rightarrow\left[\begin{array}{ccccccc}
1 & -2 & 3 & 0 & 29 & 0 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \begin{array}{cc}
x_{1}=2 x_{2}-3 x_{3}-29 x_{5} \\
x_{4}=-4 x_{5} \\
x_{6}=0
\end{array} . \text { The basic variables are } x_{1}, x_{4}, \text { and } x_{6}
$$

The free variables are x_{2}, x_{3}, and x_{5}. The solution in parametric vector form is:
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-29 \\ 0 \\ 0 \\ -4 \\ 1 \\ 0\end{array}\right]$.

First, realize that the second equation is the first equation shifted by 2 . Solving the first equation for x_{1} results in $x_{1}=-5 x_{2}+3 x_{3}$. In vector form, this is the same as $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$, which is a plane through the origin spanned by $\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$. The solution to the second equation is: $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right]$, which is a parallel plane through $\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right]$ instead of $\mathbf{0}$.

Page 47, Problem 18:
The system as an augmented matrix is $\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 2 & 1 & -3 & 13 \\ -1 & 1 & 0 & -8\end{array}\right]$ and row reduction yields: $\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & -3 & 3 & 3 \\ 0 & 3 & -3 & -3\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}1 & 0 & -1 & 7 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$, the parametric solution being $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{c}7 \\ -1 \\ 0\end{array}\right]$.
This solution is a line through $\left[\begin{array}{c}7 \\ -1 \\ 0\end{array}\right]$, parallel to the line that is the solution to the homogenous equation in Exercise 6.
Page 48, Problem 35:

By inspection, the second column of $\mathrm{A}, \mathbf{a}_{2}=3 \mathbf{a}_{1}$. Therefore, one nontrivial (not $\mathbf{0}$) solution is
$\mathbf{x}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ or $\mathbf{x}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
Page 48, Problem 38:
By Theorem 5b on page $39, A(c \mathbf{w})=c A \mathbf{w}$. Since \mathbf{w} satisfies $\mathrm{Ax}=\mathbf{0}, \mathrm{Aw}=\mathbf{0}$. So, $c A \mathbf{w}=c \mathbf{0}=\mathbf{0}$, so $A(c \mathbf{w})=\mathbf{0}$.

Section 2.1

Page 100, Problem 3:
To begin, $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] .3 I_{2}-A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]-\left[\begin{array}{cc}2 & -5 \\ 3 & -2\end{array}\right]=\left[\begin{array}{cc}1 & 5 \\ -3 & 5\end{array}\right]$ and
$\left(3 I_{2}\right) A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}2 & -5 \\ 3 & -2\end{array}\right]=\left[\begin{array}{cc}6 & -15 \\ 9 & -6\end{array}\right]$
a. $A \mathbf{b}_{1}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}-10 \\ 0 \\ 26\end{array}\right] \quad A \mathbf{b}_{2}=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]=\left[\begin{array}{c}11 \\ 8 \\ -19\end{array}\right]$ So, $A B=\left[\begin{array}{cc}-10 & 11 \\ 0 & 8 \\ 26 & -19\end{array}\right]$
b. $A B=\left[\begin{array}{cc}-1 & 3 \\ 2 & 4 \\ 5 & -3\end{array}\right]\left[\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right]=\left[\begin{array}{cc}-1(4)+3(-2) & -1(-2)+3(3) \\ 2(4)+4(-2) & 2(-2)+4(3) \\ 5(4)+-3(-2) & 5(-2)+-3(3)\end{array}\right]=\left[\begin{array}{cc}-10 & 11 \\ 0 & 8 \\ 26 & -19\end{array}\right]$

Page 100, Problem 6:
a. $A \mathbf{b}_{1}=\left[\begin{array}{cc}4 & -3 \\ -3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{c}-5 \\ 12 \\ 3\end{array}\right] \quad A \mathbf{b}_{2}=\left[\begin{array}{cc}4 & -3 \\ -3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}4 \\ -2\end{array}\right]=\left[\begin{array}{c}22 \\ -22 \\ -2\end{array}\right]$ So, $A B=\left[\begin{array}{cc}-5 & 22 \\ 12 & -22 \\ 3 & -2\end{array}\right]$
b. $A B=\left[\begin{array}{cc}4 & -3 \\ -3 & 5 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ 3 & -2\end{array}\right]=\left[\begin{array}{cc}4(1)+-3(3) & 4(4)+-3(-2) \\ -3(1)+5(3) & -3(4)+5(-2) \\ 0(1)+1(3) & 0(4)+1(-2)\end{array}\right]=\left[\begin{array}{cc}-5 & 22 \\ 12 & -22 \\ 3 & -2\end{array}\right]$

Page 100, Problem 12:

Because A is 2 x 2 and B is 2 x 2 , our new matrix of all zeros will also be 2 x 2 . Essentially, we want to solve $\left[\begin{array}{cc}3 & -6 \\ -2 & 4\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ with non-zero columns. Multiplying these matrices results in a linear system:

$$
\begin{aligned}
3 a-6 c & =0 \\
3 b-6 d & =0 \\
-2 a+4 c & =0 \\
-2 b+4 d & =0
\end{aligned}, \text { which can be broken into two separate systems: } \begin{gathered}
3 a-6 c=0 \\
-2 a+4 c=0
\end{gathered} \quad \text { and } \begin{gathered}
3 b-6 d=0 \\
-2 b+4 d=0
\end{gathered} .
$$

Using row reduction, $\left[\begin{array}{ccc}3 & -6 & 0 \\ -2 & 4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 0 & 0\end{array}\right]$ so $a=2 c$ and $b=2 d$. Answers will vary.
An example is $c=1, d=1$ so $a=b=2:\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$.
Page 101, Problem 24:
Remember, $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Let $D=\left[\begin{array}{lll}\mathbf{d}_{1} & \mathbf{d}_{2} & \mathbf{d}_{3}\end{array}\right]$. By definition of matrix multiplication, the columns of $A D$ are equivalent to $A \mathbf{d}_{1}, A \mathbf{d}_{2}$, and $A \mathbf{d}_{3}$, respectively. In order for $A D=I_{3}$, the systems generated by $A \mathbf{d}_{1}, A \mathbf{d}_{2}$, and $A \mathbf{d}_{3}$ must each have at least one solution. Since the columns of A span \mathbb{R}^{3}, each of theses systems do have at least one solution (see Theorem 4 in Section 1.4). So, the matrix D is found by selecting one of the solutions from each of the systems $\left(A \mathbf{d}_{1}, A \mathbf{d}_{2}\right.$, and $\left.A \mathbf{d}_{3}\right)$ and using it as the columns of D.

Let $\mathbf{b} \in \mathbb{R}^{\mathrm{m}}$ be arbitrary (\mathbf{b} is an $\mathrm{m} \times 1$ matrix or vector). Assume $A D=I_{m}$ is true. Then, multiplying by \mathbf{b} yields $A D \mathbf{b}=I_{m} \mathbf{b}$, which implies $A D \mathbf{b}=\mathbf{b}$ (because I_{m} is essentially 1). Because the order of the matrices is defined, $A(D \mathbf{b})=\mathbf{b}$ (by Theorem 2 of this section on page 97). The product $D \mathbf{b}$ is a vector which can be written as $\mathbf{x}=D \mathbf{b}$. So, $A \mathbf{x}=\mathbf{b}$ is true for every \mathbf{b} in \mathbb{R}^{m}. By Theorem 4 in Section 1.4 , since $A \mathbf{x}=\mathbf{b}$ is true for every \mathbf{b} in $\mathbb{R}^{\mathrm{m}}, A$ has a pivot position in every row. Because each pivot is in a different column, A must have at least as many columns as rows. Page 101, Problem 33:

Let A be an arbitrary matrix of order $\mathrm{i} \mathrm{x} \mathrm{j}: A=\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 j} \\ \vdots & \ldots & \vdots \\ a_{i 1} & \cdots & a_{i j}\end{array}\right]$ and B of order $\mathrm{j} \mathrm{xk}: B=\left[\begin{array}{ccc}b_{11} & \ldots & b_{1 k} \\ \vdots & \ldots & \vdots \\ b_{j 1} & \cdots & b_{j k}\end{array}\right]$.
The product $A B$ is defined because the number of columns of $A(j)$ equals the number of rows of $B(j)$.
The product is: $A B=\left[\begin{array}{ccc}a_{11} b_{11}+\ldots+a_{1 j} b_{j 1} & \cdots & a_{11} b_{1 k}+\ldots+a_{1 j} b_{j k} \\ \vdots & \cdots & \vdots \\ a_{i 1} b_{11}+\ldots+a_{i j} b_{j 1} & \cdots & a_{i 1} b_{1 k}+\ldots+a_{i j} b_{j k}\end{array}\right]$ which is a matrix of order ix k.
It follows that $(A B)^{T}=\left[\begin{array}{ccc}a_{11} b_{11}+\ldots+a_{1 j} b_{j 1} & \cdots & a_{i 1} b_{11}+\ldots+a_{i j} b_{j 1} \\ \vdots & \cdots & \vdots \\ a_{11} b_{1 k}+\ldots+a_{1 j} b_{j k} & \cdots & a_{i 1} b_{1 k}+\ldots+a_{i j} b_{j k}\end{array}\right]$, which is a matrix of order k x i.
$B^{T}=\left[\begin{array}{ccc}b_{11} & \ldots & b_{j 1} \\ \vdots & \ldots & \vdots \\ b_{1 k} & \cdots & b_{j k}\end{array}\right]$, which is of order kxj , and $A^{T}=\left[\begin{array}{ccc}a_{11} & \ldots & a_{i 1} \\ \vdots & \ldots & \vdots \\ a_{1 j} & \cdots & a_{i j}\end{array}\right]$, which is of order $\mathrm{j} \times \mathrm{i}$.
The product $B^{T} A^{T}$ is: $\left[\begin{array}{ccc}b_{11} a_{11}+\ldots+b_{j 1} a_{1 j} & \ldots & b_{11} a_{i 1}+\ldots+b_{j 1} a_{i j} \\ \vdots & \ldots & \vdots \\ b_{1 k} a_{11}+\ldots+b_{j k} a_{1 j} & \cdots & b_{1 k} a_{i 1}+\ldots+b_{j k} a_{i j}\end{array}\right]$, which is a matrix of order k x i.
Looking at $(A B)^{T}$ and $B^{T} A^{T}$, it is clear that the matrices are equivalent.

