MATH221

Midterm \#3, 05/03/16

Total 100
Solutions

Show all work legibly.

Name:

\qquad

$$
A=\left[\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right]
$$

1. (20) Find eigenvalues λ_{1} and λ_{2} of the matrix A.

Solution. $\operatorname{det}(A-\lambda I)=(2-\lambda)(1-\lambda)$. Hence $\lambda_{1}=2$, and $\lambda_{2}=1$.
$\lambda_{1}=\quad \lambda_{2}=$
2. (20) Find eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} so that $A \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}$, and $A \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}$.

Solution.

- If $\left(A-\lambda_{1} I\right) \mathbf{x}=0$, then $\mathbf{x}=\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ solves the equation.
- If $\left(A-\lambda_{2} I\right) \mathbf{x}=0$, then $\mathbf{x}=\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ solves the equation.
$\mathbf{v}_{1}=[\quad]$ and $\mathbf{v}_{2}=[]$

3. (20) Find the inverse V^{-1} of the matrix $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ where \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of the matrix A.

Solution.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & -1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

$V^{-1}=$
4. (20) Use V and V^{-1} to compute A^{10}.

Solution.

$$
A^{10}=V\left[\begin{array}{rr}
2^{10} & 0 \\
0 & 1
\end{array}\right] V^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
2^{10} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
2^{10} & 1-2^{10} \\
0 & 1
\end{array}\right]
$$

$A^{10}=$
5. (20) Use the eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} to build an orthonormal basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ for \mathbf{R}^{2}.

Solution. $\mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|}=\mathbf{v}_{1}$. If $\mathbf{y}=\mathbf{v}_{2}+t \mathbf{w}_{1}$ such that $\mathbf{y}^{T} \mathbf{w}_{1}=0$, then $t=-1$, and $\mathbf{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. The second orthonormal basis vector \mathbf{w}_{2} is normalized \mathbf{y}. Since $|\mathbf{y}|=1$ one has

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \text { and } \mathbf{w}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

$$
\mathbf{w}_{1}=[\quad] \text { and } \mathbf{w}_{2}=[\quad]
$$

