## **MATH221**

## Midterm #3, 05/03/16

## Total 100

## Solutions

Show all work legibly.

Name:\_\_\_\_\_

$$A = \left[ \begin{array}{cc} 2 & -1 \\ 0 & 1 \end{array} \right]$$

1. (20) Find eigenvalues  $\lambda_1$  and  $\lambda_2$  of the matrix A.

**Solution**. det  $(A - \lambda I) = (2 - \lambda)(1 - \lambda)$ . Hence  $\lambda_1 = 2$ , and  $\lambda_2 = 1$ .

$$\lambda_1 = \lambda_2 =$$

2. (20) Find eigenvectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  so that  $A\mathbf{v}_1 = \lambda_1\mathbf{v}_1$ , and  $A\mathbf{v}_2 = \lambda_2\mathbf{v}_2$ .

Solution.

- 3. (20) Find the inverse  $V^{-1}$  of the matrix  $V = [\mathbf{v}_1, \mathbf{v}_2]$  where  $\mathbf{v}_1$  and  $\mathbf{v}_2$  are eigenvectors of the matrix A.

Solution.

$$\left[\begin{array}{rrrrr} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{rrrrr} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{array}\right]$$

 $V^{-1} =$ 

4. (20) Use V and  $V^{-1}$  to compute  $A^{10}$ .

Solution.

$$A^{10} = V \begin{bmatrix} 2^{10} & 0 \\ 0 & 1 \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2^{10} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2^{10} & 1 - 2^{10} \\ 0 & 1 \end{bmatrix}.$$
$$A^{10} =$$

5. (20) Use the eigenvectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  to build an orthonormal basis  $\{\mathbf{w}_1, \mathbf{w}_2\}$  for  $\mathbf{R}^2$ .

Solution.  $\mathbf{w}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|} = \mathbf{v}_1$ . If  $\mathbf{y} = \mathbf{v}_2 + t\mathbf{w}_1$  such that  $\mathbf{y}^T\mathbf{w}_1 = 0$ , then t = -1, and  $\mathbf{y} = \begin{bmatrix} 0\\1 \end{bmatrix}$ . The second orthonormal basis vector  $\mathbf{w}_2$  is normalized  $\mathbf{y}$ . Since  $|\mathbf{y}| = 1$  one has

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and  $\mathbf{w}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ .

 $\mathbf{w}_1 = \begin{bmatrix} & \\ & \end{bmatrix}$  and  $\mathbf{w}_2 = \begin{bmatrix} & \\ & \end{bmatrix}$