MATH221

Midterm #3, 05/03/16

Total 100

Show all work legibly.

Name:_____

$$A = \left[\begin{array}{cc} 2 & -1 \\ 0 & 1 \end{array} \right]$$

1. (20) Find eigenvalues λ_1 and λ_2 of the matrix A.

$$\lambda_1 = \lambda_2 =$$

2. (20) Find eigenvectors \mathbf{v}_1 and \mathbf{v}_2 so that $A\mathbf{v}_1 = \lambda_1\mathbf{v}_1$, and $A\mathbf{v}_2 = \lambda_2\mathbf{v}_2$.

$$\mathbf{v}_1 = \begin{bmatrix} & \\ & \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} & \\ & \end{bmatrix}$

3. (20) Find the inverse V^{-1} of the matrix $V = [\mathbf{v}_1, \mathbf{v}_2]$ where \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of the matrix A.

4. (20) Use V and V^{-1} to compute A^{10} .

5. (20) Use the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 to build an orthonormal basis $\{\mathbf{w}_1, \mathbf{w}_2\}$ for \mathbf{R}^2 .

$$\mathbf{w}_1 = \begin{bmatrix} & \\ & \end{bmatrix}$$
 and $\mathbf{w}_2 = \begin{bmatrix} & \\ & \end{bmatrix}$