MATH221

Midterm \#2, 02/31/16
Total 100
Solutions

Show all work legibly.
Name:

1. (25) Let $T: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ be a linear transformation so that $T(2)=4$. Compute $T(7)$.

Solution. $T(7)=T(3.5 \times 2)=3.5 \times T(2)=3.5 \times 4=14$.
$T(7)=14$
2. (25) Suppose a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ has the property that $T(\mathbf{u})=T(\mathbf{v})$ for some pair of distinct vectors \mathbf{u} and \mathbf{v}. True or False? $T \operatorname{maps} \mathbf{R}^{n}$ onto \mathbf{R}^{n}.

Solution. Let A be athe standard matrix of a linear transformation. Assume that T maps \mathbf{R}^{n} onto \mathbf{R}^{n}. Thies yields existence of A^{-1}. If $\mathbf{y}=A \mathbf{u}=T(\mathbf{u})=T(\mathbf{v})=A \mathbf{v}$, then $A^{-1} \mathbf{y}=\mathbf{u}=\mathbf{v}$. This contradiction shows that the assumption is false, and completes the proof.

Mark one and explain.

- True
- False

3. (25) Define a transformation $T: \mathbf{P}_{2} \rightarrow \mathbf{R}^{2}$ by $T(p)=\left[\begin{array}{c}p(1) \\ p(2)\end{array}\right]$.
(a) (10) True or False? T is a linear transformation.

Solution.

$$
T\left(c_{1} p_{1}+c_{2} p_{2}\right)=\left[\begin{array}{l}
c_{1} p_{1}(1)+c_{2} p_{2}(1) \\
c_{1} p_{1}(2)+c_{2} p_{2}(2)
\end{array}\right]=\left[\begin{array}{l}
c_{1} p_{1}(1) \\
c_{1} p_{1}(2)
\end{array}\right]+\left[\begin{array}{l}
c_{2} p_{2}(1) \\
c_{2} p_{2}(2)
\end{array}\right]=c_{1} T\left(p_{1}\right)+c_{2} T\left(p_{2}\right)
$$

Mark one and explain.
\square True \quad False
(b) (15) Identify all polynomials \mathcal{P} in \mathbf{P}_{2} that vanish under T, i.e.

$$
\mathcal{P}=\left\{p: p \in \mathbf{P}_{2} \text { and } T(p)=0\right\}
$$

Solution. If $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$, and $p(1)=p(2)=0$, then

$$
a_{0}+a_{1}+a_{2}=0 \text { and } a_{0}+2 a_{1}+4 a_{2}=0
$$

That is $a_{0}=2 a_{2}$, and $a_{1}=-3 a_{2}$. Hence $p(x)=t\left[2-3 x+x^{2}\right]$.
$\mathcal{P}=\left\{t\left[2-3 x+x^{2}\right]:-\infty<t<\infty\right\}$.
4. (25) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be a linearly independent set of vectors in \mathbf{R}^{n}. True or False? The vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span \mathbf{R}^{n}.

Solution. Since the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent the matrix $A=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is invertible. If $\mathbf{b} \in \mathbf{R}^{n}$, and $\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]=\mathbf{c}=A^{-1} \mathbf{b}$, then $c_{1} \mathbf{a}_{+} \cdots+c_{n} \mathbf{a}_{n}=A \mathbf{c}=\mathbf{b}$.
Mark one and explain.

- True \quad False

