MATH 221, Fall 2016 - Homework 8 Solutions

Due Tuesday, November 8

Section 4.3

Page 213, Problem 3:
The matrix whose columns are the given set of vectors is $\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & 1 & -1 \\ -3 & -4 & 1\end{array}\right]$, which reduces to $\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 5 & -5\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0\end{array}\right]$.

Because there are only two pivot positions, the set of vectors are neither linearly independent nor span \mathbb{R}^{3}, thus the set of vectors do NOT form a basis of \mathbb{R}^{3}.

Page 213, Problem 8:

The matrix whose columns are the given set of vectors is $\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ -2 & 3 & -1 & 0 \\ 3 & -1 & 5 & -1\end{array}\right]$. Because there are four columns, the set cannot be linearly indpendent in \mathbb{R}^{3}. Thus, the set of vectors do NOT form a basis of \mathbb{R}^{3}.

To determine if the set of vectors span \mathbb{R}^{3}, row-reduce the matrix:

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
-2 & 3 & -1 & 0 \\
3 & -1 & 5 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 3 & 3 & 0 \\
0 & -1 & -1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Because there is a pivot position in each row, the set of vectors do span \mathbb{R}^{3}.

Page 213, Problem 13:

To find a basis for $\operatorname{Col} A$, use Theorem 6 of this section. Notice that the pivot positions are in columns 1 and 2 (look at matrix B, which is in row echelon form). Use these columns from matrix A to form a basis. Therefore, a basis for $\operatorname{Col} A$
is $\left\{\left[\begin{array}{c}-2 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{c}4 \\ -6 \\ 8\end{array}\right]\right\}$. To find a basis for $\operatorname{Nul} A$, write the general solution to $A \mathbf{x}=\mathbf{0}$ in terms of the free variables
$\left(x_{3}\right.$ and $\left.x_{4}\right): \mathbf{x}=x_{3}\left[\begin{array}{c}-6 \\ -5 / 2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-5 \\ -3 / 2 \\ 0 \\ 1\end{array}\right]$. Thus a basis for $\operatorname{Nul} A$ is $\left\{\left[\begin{array}{c}-6 \\ -5 / 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-5 \\ -3 / 2 \\ 0 \\ 1\end{array}\right]\right\}$.

To find a basis for $\operatorname{Col} A$, use Theorem 6 of this section. Notice that the pivot positions are in columns 1,3 , and 5
(look at matrix B, which is in row echelon form). Use these columns from matrix A to form a basis. Therefore, a basis for
$\operatorname{Col} A$ is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{l}8 \\ 8 \\ 9 \\ 9\end{array}\right]\right\}$. To find a basis for Nul A, we need the general solution to $A \mathbf{x}=\mathbf{0}$ in terms of the
free variables $\left(x_{2}\right.$ and $\left.x_{4}\right)$. Because matrix B is only in row echelon form, reduce it to reduced row echelon form:

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 5 \\
0 & 0 & 3 & -6 & 3 \\
0 & 0 & 0 & 0 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \cdot \mathbf{x}=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1 \\
0
\end{array}\right] . \text { Thus a basis for NulA is }\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1 \\
0
\end{array}\right]\right\} .
$$

Page 214, Problem 21b:

True or False: If $H=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$, then $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for H.

FALSE: The set $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ must also be linearly independent.
Page 214, Problem 21c:

True or False: The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.

TRUE: Because the matrix is invertible, the columns span \mathbb{R}^{n} and are linearly independent (by the Invertible Matrix Theorem). Hence, the columns form a basis for \mathbb{R}^{n}.

Page 214, Problem 21d:

True or False: A basis is a spanning set that is as large as possible.

FALSE: A basis is a spanning set that is as small possible (read "Two Views of a Basis" on p. 212).
Page 214, Problem 22a:

True or False: A linearly independent set in a subspace H is a basis for H.

FALSE: In order to be a basis, the set must also span H (by definition).

Page 214, Problem 22b:
True or False: If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.

TRUE: By the Spanning Set Theorem, removing linearly dependent vectors in S will still result in a spanning set (this new set is a subset of S. Because the new set will eventually only contain linearly independent vectors, the set will be a basis for V.

True or False: If B is an echelon form of a matrix A, then the pivot columns of B form a basis for $\operatorname{Col} A$.
FALSE: The pivot columns in B tell which columns in matrix A form the basis for $\operatorname{Col} A$ (see the warning after Theorem 6 on page 212).

Page 214, Problem 25:

While it might seem that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a spanning set for H, it is not. Notice that H is a subset of $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Also, there are vectors in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ which are not in H, such as \mathbf{v}_{1} and \mathbf{v}_{3} (the second and third elements of these vectors are not equal). Therefore, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ does not $\operatorname{span} H$, so $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ cannot be a basis for H.

Page 215, Problem 33:

The polynomials are linearly independent because neither can be written as a scalar multiple of the other. As polynomials in \mathbb{P}_{3}, they can be written as vectors: $\mathbf{p}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{p}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]$, which as a matrix that is row-reduced is: $\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right]$, indicating the only solution to $A \mathbf{x}=\mathbf{0}$ is the trivial solution (hence, the columns are linearly independent).

Section 4.4

Page 222, Problem 3:

$$
\text { Let } \mathcal{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right] \text {. Then, } \mathbf{x}=1 \mathbf{b}_{1}+0 \mathbf{b}_{2}+-2 \mathbf{b}_{3}=1\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]+0\left[\begin{array}{c}
5 \\
0 \\
-2
\end{array}\right]+-2\left[\begin{array}{c}
4 \\
-3 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]+\left[\begin{array}{c}
-8 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
-7 \\
4 \\
3
\end{array}\right]
$$

Page 222, Problem 7:
In this problem, we are solving the equation $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ for the coordinates c_{1}, c_{2}, and c_{3}. In this problem, this equation is represented by $\left[\begin{array}{c}8 \\ -9 \\ 6\end{array}\right]=c_{1}\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]+c_{2}\left[\begin{array}{c}-3 \\ 4 \\ 9\end{array}\right]+c_{3}\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$, which amounts to solving the augmented system $\left[\begin{array}{cccc}1 & -3 & 2 & 8 \\ -1 & 4 & -2 & -9 \\ -3 & 9 & 4 & 6\end{array}\right]$. Row-reducing yields $\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$.

So, $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right]$.

As stated in this section (on page 219), the matrix $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$ is the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^{n}. Therefore, $P_{\mathcal{B}}=\left[\begin{array}{ccc}3 & 2 & 1 \\ 0 & 2 & -2 \\ 6 & -4 & 3\end{array}\right]$.

Page 223, Problem 14:
Any polynomial $a+b t+c t^{2}$ in \mathbb{P}_{2} can be written in vector form as $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Therefore, the set \mathcal{B} as a set of vectors is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$ and the vector \mathbf{p} is $\mathbf{p}=\left[\begin{array}{c}1 \\ 3 \\ -6\end{array}\right]$. Solve the augmented system $\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \\ -1 & -1 & 1 & -6\end{array}\right]$.

The solution in reduced-echelon form is $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1\end{array}\right]$, so $[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$.
Page 223, Problem 22:
Let $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \ldots & \mathbf{b}_{n}\end{array}\right]$ (which is an $n \times n$ matrix because its columns form a basis for \mathbb{R}^{n}). By definition, $\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ which is a transformation of $[\mathbf{x}]_{\mathcal{B}}$ to \mathbf{x}. Because the columns of $P_{\mathcal{B}}$ are linearly independent (they form a basis for \mathbb{R}^{n}),
$P_{\mathcal{B}}$ is invertible. Thus, left-side multiplication of $P_{\mathcal{B}}^{-1}$ results in $P_{\mathcal{B}}^{-1} \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$, which is a transformation of \mathbf{x} to $[\mathbf{x}]_{\mathcal{B}}$ $\left(\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}\right)$. Therefore, take $A=P_{\mathcal{B}}^{-1}$.

Page 222, Problem 26:

Assume \mathbf{w} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$. Then, there exist scalars c_{1}, \ldots, c_{p} so that $\mathbf{w}=c_{1} \mathbf{u}_{1}+\ldots+c_{p} \mathbf{u}_{p}$. Since the coordiante mapping $[\mathbf{w}]_{\mathcal{B}}$ is a linear transformation (Theorem 8), it follows that $[\mathbf{w}]_{\mathcal{B}}=c_{1}\left[\mathbf{u}_{1}\right]_{\mathcal{B}}+\ldots+c_{p}\left[\mathbf{u}_{p}\right]_{\mathcal{B}}$. So, $[\mathbf{w}]_{\mathcal{B}}$ must be a linear combination of $\left[\mathbf{u}_{1}\right]_{\mathcal{B}}, \ldots,\left[\mathbf{u}_{p}\right]_{\mathcal{B}}$. Since the transformation is one-to-one, the converse must be true.

