MATH 221, Fall 2016 - Homework 7 Solutions

Due Tuesday, October 25

Section 4.1

Page 196, Problem 16:

It is clear that W is not a vector space because it can never contain the zero vector (the first entry is always 1).

Page 196, Problem 21:

The set H is a subspace of $M_{2 x 2}$ because:

1) If $a=b=d=0$, the zero vector is contained in the space.

Let $\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]$ and $\left[\begin{array}{cc}a_{2} & b_{2} \\ 0 & d_{2}\end{array}\right]$ be two arbitrary matrices in H.
2) Then, $\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]+\left[\begin{array}{cc}a_{2} & b_{2} \\ 0 & d_{2}\end{array}\right]=\left[\begin{array}{cc}a_{1}+a_{2} & b_{1}+b_{2} \\ 0 & d_{1}+d_{2}\end{array}\right]$, which is of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, so H is closed under addition.
3) Let β be an arbitrary scalar. Then, $\beta\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right]=\left[\begin{array}{cc}\beta a_{1} & \beta b_{1} \\ 0 & \beta d_{1}\end{array}\right]$, which is of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$.

So H is closed under scalar multiplication.

Page 196, Problem 22:

The set $M_{2 x 4}$ is the set of all matrices of the form $\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h\end{array}\right]$ where the entries are arbitrary.
This set is a subspace (as stated in the problem).

Let the matrix F be $F=\left[\begin{array}{cc}A & B \\ C & D \\ E & F\end{array}\right]$ where the entries are fixed.
The set $H=\left\{A \in M_{2 x 4}: F A=0\right\}$ is a subset of $M_{2 x 4}$. To show H is a subspace:

1) Because $F 0=0,0 \in H$.
2) Let A_{1} and A_{2} be arbitrary matrices in H. Then, $F\left(A_{1}\right)=0$ and $F\left(A_{2}\right)=0$.

Because $F\left(A_{1}+A_{2}\right)=F\left(A_{1}\right)+F\left(A_{2}\right)=0+0=0$. Thus, $A_{1}+A_{2} \in H$, so H is closed under addition.
3) Let $A \in H$ and $c \in \mathbb{R}$ be arbitrary. Thus, $F A=0$. So, $F(c A)=c F A=c(F A)=0$.

Thus, $c A \in H$, so H is closed under scalar multiplication.

Page 197, Problem 32:

To show $H \cap K$ is a subspace, check the three conditions:

1) Because H and K are subspaces, $\mathbf{0} \in H$ and $\mathbf{0} \in K$. Thus, $\mathbf{0} \in H \cap K$.
2) Let $\mathbf{u} \in H \cap K$ and $\mathbf{v} \in H \cap K$ be arbitrary. Then, $\mathbf{u} \in H$ and $\mathbf{u} \in K$ and $\mathbf{v} \in H$ and $\mathbf{v} \in K$.

Because H and K are subspaces, $\mathbf{u}+\mathbf{v} \in H$ and $\mathbf{u}+\mathbf{v} \in K$. Thus, $\mathbf{u}+\mathbf{v} \in H \cap K$.
3) Let $c \in \mathbb{R}$ and $\mathbf{u} \in H \cap K$ be arbitrary. Then, $\mathbf{u} \in H$ and $\mathbf{u} \in K$.

Because H and K are subspaces, $c \mathbf{u} \in H$ and $c \mathbf{u} \in K$. Thus, $c \mathbf{u} \in H \cap K$.

An example in \mathbb{R}^{2} to show $H \cup K$ is not always a subspace would be $H=\{(x, 0): x \in \mathbb{R}\}$ and $K=\{(0, y): y \in \mathbb{R}\}$
(the x-axis and y-axis, respectively). Let $\mathbf{u}=(1,0) \in H \cup K$ and $\mathbf{v}=(0,1) \in H \cup K$.
Then, $\mathbf{u}+\mathbf{v}=(1,1)$, which is not in H or in K, so it is not in $H \cup K$.
Thus, $H \cup K$ is not closed under addition and is therefore not a subspace.

Page 197, Problem 33a:
To show $H+K$ is a subspace:

1) Because H and K are subspaces, $\mathbf{0} \in H$ and $\mathbf{0} \in K$. Thus, $\mathbf{0}+\mathbf{0}=\mathbf{0} \Rightarrow \mathbf{0} \in H+K$.
2) Let $\mathbf{x}, \mathbf{y} \in H+K$ be arbitrary.

Then, $\mathbf{x}=\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in H$ and $\mathbf{v} \in K$ and $\mathbf{y}=\mathbf{s}+\mathbf{t}$ where $\mathbf{s} \in H$ and $\mathbf{t} \in K$.
Thus, $\mathbf{x}+\mathbf{y}=(\mathbf{u}+\mathbf{v})+(\mathbf{s}+\mathbf{t})=(\mathbf{u}+\mathbf{s})+(\mathbf{v}+\mathbf{t})$. But, $\mathbf{u}+\mathbf{s} \in H$ and $\mathbf{v}+\mathbf{t} \in K$ (because H and K are subspaces).
Thus, $\mathbf{x}+\mathbf{y} \in H+K$, so $H+K$ is closed under addition.
3) Let $\mathbf{x} \in H+K$ and $c \in \mathbb{R}$ be arbitrary. Then, $\mathbf{x}=\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in H$ and $\mathbf{v} \in K$. Thus, $c \mathbf{x}=c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.

Because H and K are subspaces, $c \mathbf{u} \in H$ and $c \mathbf{v} \in K$. Thus, $c \mathbf{x} \in H+K$, so $H+K$ is closed under scalar multiplication.
Page 197, Problem 33b:
Because every vector in H can be written as a sum of itself and $\mathbf{0}$ (the zero vector in K and H), H is a subset of $H+K$.

Because H contains the zero vector and H is closed under addition and scalar multiplication (because H is a subspace
of V), H is a subspace of $H+K$ (this arguement also applies to K, so K is also a subspace of $H+K$.

Section 4.2

Page 206, Problem 6:
Solve the equation $A \mathbf{x}=\mathbf{0}:\left[\begin{array}{cccccc}1 & 3 & -4 & -3 & 1 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 5 & -6 & 1 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Page 206, Problem 9:

The system of equations can be rearranged to $\begin{gathered}p-3 q-4 s-0 r=0 \\ 2 p-0 q-s-5 r=0\end{gathered}$. So the vectors in W are solutions to this system.

Therefore, W is a subspace of \mathbb{R}^{4}, by Theorem 2 (and hence a vector space).

Page 206, Problem 14:
Notice that $W=\operatorname{Col}$ A for $A=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2 \\ 5 & -1\end{array}\right]$. Therefore, W is a subspce of \mathbb{R}^{3} (and a vector space) by Theorem 3
(look at Example 4 of this section).

Page 206, Problem 27:

Let $A=\left[\begin{array}{ccc}1 & -3 & -3 \\ -2 & 4 & 2 \\ -1 & 5 & 7\end{array}\right]$. Then, $\mathbf{x}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{0}$. Thus, $\mathbf{x} \in N u l \mathrm{~A}$. Since $N u l \mathrm{~A}$ is a subspace
of \mathbb{R}^{3}, it is closed under scalar multiplication. Therefore, $10 \mathbf{x}=\left[\begin{array}{c}30 \\ 20 \\ -10\end{array}\right]$ is also in $N u l \mathrm{~A}$ (a solution to the system).

Page 206, Problem 28:

Let $A=\left[\begin{array}{ccc}5 & 1 & -3 \\ -9 & 2 & 5 \\ 4 & 1 & -6\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 9\end{array}\right]$. Because there is a solution to $A \mathbf{x}=\mathbf{b}, \mathbf{b} \in C o l$ A. Since $C o l$ A is a subspace of \mathbb{R}^{3}, it is closed under scalar multiplication. Thus, $5 \mathbf{b}=\left[\begin{array}{c}0 \\ 5 \\ 45\end{array}\right]$ is also in $C o l$ A. So, the second system must also have a solution.

Let $T(\mathbf{x})$ and $T(\mathbf{w})$ be vectors in the range of T. Then, because T is a linear transformation, $T(\mathbf{x})+T(\mathbf{w})=T(\mathbf{x}+\mathbf{w})$ and for any scalar $c, c T(\mathbf{x})=T(c \mathbf{x})$. Because $T(\mathbf{x}+\mathbf{w})$ and $T(c \mathbf{x})$ are in the range of T (which is a subset of W), it follows that the range of T is a subspace of W (closed under addition and scalar multiplication).

