MATH 221, Fall 2016 - Homework 6 Solutions

Due Tuesday, October 18

Section 2.3

Page 115, Problem 2:
$A=\left[\begin{array}{cc}-4 & 2 \\ 6 & -3\end{array}\right]$

Notice that $\mathbf{a}_{2}=-\frac{1}{2} \mathbf{a}_{1}$ where \mathbf{a}_{i} is the column vector of the matrix A. Thus, the columns are linearly dependent. By Theorem 8 of this section, the matrix is singular (nonivertible). Also, notice that the determinant is equal to 0 . So, by Theorem 4 of the previous section, the matrix is singular.

Page 115, Problem 4:

$$
A=\left[\begin{array}{ccc}
-5 & 1 & 4 \\
0 & 0 & 0 \\
1 & 4 & 9
\end{array}\right] A^{T}=\left[\begin{array}{ccc}
-5 & 0 & 1 \\
1 & 0 & 4 \\
4 & 0 & 9
\end{array}\right]
$$

Notice that the columns of A^{T} are linearly dependent because the zero vector is a member of the set.
Thus, A^{T} is singular (noninvertible). Hence A is singular (nonivertible), by Theorem 8 .

Also, because A contains a row of zeros, it cannot be reduced to the identity matrix.

Therefore, by Theorem 8, it is signular (noninvertible).

Page 115, Problem 8:
$A=\left[\begin{array}{llll}3 & 4 & 7 & 4 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 1\end{array}\right]$
Because the matrix is in echelon form, it is clear that there is a pivot in every row.

Hence, the matrix is invertible by Theorem 8.

Page 115, Problem 11a:

True or False: If the equation $\mathrm{A} \mathbf{x}=\mathbf{0}$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.

TRUE: Because (d) of Theorem 8 is true, (b) must also be true.

True or False: If the equation $\mathrm{Ax}=\mathbf{0}$ has a nontrivial solution, then A has fewer than n pivot positions.
TRUE: Because (d) of Theorem 8 is false, (c) must also be false. An $n \times n$ matrix can never have more than n pivot positions, so it must have fewer than n.

Page 115, Problem 11e:

True or False: If A^{T} is not invertible, then A is not invertible.

TRUE: Because (l) of Theorem 8 is false, (a) must also be false.

Page 115, Problem 12a:

True or False: If there is an $n \times n$ matrix D such that $A D=I$, then $D A=I$.
TRUE: Because (k) of Theorem 8 is true, (j) is also true. Because $A D=I, D=A^{-1}$, so $D A=A^{-1} A=I$.

Page 115, Problem 12b:

True or False: If the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} into \mathbb{R}^{n}, then the row reduced echelon form of A is I.

FALSE: In order for this to follow from Theorem $8, \mathbf{x} \mapsto A \mathbf{x}$ must map \mathbb{R}^{n} onto \mathbb{R}^{n}, not into.

Page 115, Problem 12c:

True or False: If the columns of A are linearly independent, then the columns of A span \mathbb{R}^{n}.

TRUE: Because (e) of Theorem 8 is true, (h) must also be true.

Page 115, Problem 21:

Notice that on page 112, in the paragraph at the end of the page, it says (g) in Theorem 8 could be rewritten as
"The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^{n}. "

In problem 21, this statement is false, thus (h) of Theorem 8 must also be false, so the columns of do not span \mathbb{R}^{n}.

Page 115, Problem 27:

Assume $A B$ is invertible. Then, by Theorem $8(\mathrm{k})$ of this section, there exists an $n \times n$ matrix W such that $A B W=I$.

By properties of matrices (and because the order is defined), $A B W=A(B W)=I$.
Because A is square, let $B W=D$. Thus, by Theorem $8(\mathrm{k}), A$ is invertible.

Let $T(\mathbf{x})=A \mathbf{x} . A=\left[\begin{array}{cc}-5 & 9 \\ 4 & -7\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Because $\operatorname{det} A=35-36=-1, A$ is invertible.

Thus, by Theorem 9 of this section, T is invertible.
$T^{-1}(\mathbf{x})=A^{-1} \mathbf{x} . A^{-1}=\frac{1}{-1}\left[\begin{array}{ll}-7 & -9 \\ -4 & -5\end{array}\right]=\left[\begin{array}{ll}7 & 9 \\ 4 & 5\end{array}\right]$. Thus, $T^{-1}(\mathbf{x})=\left[\begin{array}{ll}7 & 9 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left(7 x_{1}+9 x_{2}, 4 x_{1}+5 x_{2}\right)$.
Page 115, Problem 39:

Because T maps \mathbb{R}^{n} onto \mathbb{R}^{n}, then the standard matrix A is invertible, by Theorem 8 of this section.
Hence, by Theorem 9 of this section, T is invertible and A^{-1} is the standard matrix of T^{-1}.
Thus, by Theorem 8 of this section, the columns of A^{-1} are linearly independent and span \mathbb{R}^{n}.
By Theorem 12 in Section 1.9, this shows that T^{-1} is a one-to-one mapping of \mathbb{R}^{n} onto \mathbb{R}^{n}.

