MATH 221, Fall 2016 - Homework 3 Solutions

Due Tuesday, September 27

Section 1.5

Page 47, Problem 8:
In order to solve this problem, put the matrix $\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{0}\end{array}\right]$ (where \mathbf{a}_{1}, etc. are the columns of A) in reduced echelon form: $\left[\begin{array}{ccccc}1 & -3 & -8 & 5 & 0 \\ 0 & 1 & 2 & -4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & -2 & -7 & 0 \\ 0 & 1 & 2 & -4 & 0\end{array}\right]$, which is equivalent to the
system $\begin{aligned} & x_{1}-2 x_{3}-7 x_{4}=0 \\ & x_{2}+2 x_{3}-4 x_{4}=0\end{aligned}$. It is clear that the basic variables are x_{1} and x_{2} while the free varaibles are x_{3} and x_{4}. Solving for the free variables results in: $\begin{gathered}x_{1}=2 x_{3}+7 x_{4} \\ x_{2}=-2 x_{3}+4 x_{4}\end{gathered}$. Writing in parametric vector form:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3}+7 x_{4} \\
-2 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
7 x_{4} \\
4 x_{4} \\
0 \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
4 \\
0 \\
1
\end{array}\right]
$$

Page 47, Problem 10:
This is the same process as problem 8 in this section: $\left[\begin{array}{ccccc}-1 & -4 & 0 & -4 & 0 \\ 2 & -8 & 0 & 8 & 0\end{array}\right] \rightarrow\left[\begin{array}{lllll}1 & 0 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$,
$\begin{aligned} x_{1} & =-4 x_{4} \\ x_{2} & =0\end{aligned}$. The basic variables are x_{1} and x_{2} while the free variables are x_{3} and x_{4}. The parametric vector
form is: $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ 1\end{array}\right]$.
Page 47, Problem 12:
This is the same process as the previous two problems: $\left[\begin{array}{ccccccc}1 & -2 & 3 & -6 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & -6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\rightarrow\left[\begin{array}{ccccccc}1 & -2 & 3 & 0 & 29 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \begin{array}{cc}x_{1}=2 x_{2}-3 x_{3}-29 x_{5} \\ x_{4}=-4 x_{5} \\ x_{6}=0\end{array}$. The basic variables are x_{1}, x_{4}, and x_{6}.
The free variables are x_{2}, x_{3}, and x_{5}. The solution in parametric vector form is:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-29 \\
0 \\
0 \\
-4 \\
1 \\
0
\end{array}\right]
$$

Page 47, Problem 18:

The system as an augmented matrix is $\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 2 & 1 & -3 & 13 \\ -1 & 1 & 0 & -8\end{array}\right]$ and row reduction yields: $\left[\begin{array}{cccc}1 & 2 & -3 & 5 \\ 0 & -3 & 3 & 3 \\ 0 & 3 & -3 & -3\end{array}\right]$
$\rightarrow\left[\begin{array}{cccc}1 & 0 & -1 & 7 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$, the parametric solution being $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{c}7 \\ -1 \\ 0\end{array}\right]$.
This solution is a line through $\left[\begin{array}{c}7 \\ -1 \\ 0\end{array}\right]$, parallel to the line that is the solution to the homogenous equation in Exercise 6.
Page 48, Problem 35:

By inspection, the second column of $\mathrm{A}, \mathbf{a}_{2}=3 \mathbf{a}_{1}$. Therefore, one nontrivial (not $\mathbf{0}$) solution is

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] \text { or } \mathbf{x}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right] .
$$

Section 1.7

Page 60, Problem 6:

Determine if $\mathrm{Ax}=\mathbf{0}$ has only the trivial solution:

$$
\left[\begin{array}{cccc}
-4 & -3 & 0 & 0 \\
0 & -1 & 5 & 0 \\
1 & 1 & -5 & 0 \\
2 & 1 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -5 & 0 \\
0 & 1 & -5 & 0 \\
-4 & -3 & 0 & 0 \\
2 & 1 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -5 & 0 \\
0 & 1 & -5 & 0 \\
0 & 1 & -20 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -5 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Because there are no free variables, the system has only the trivial solution, so the columns of \mathbf{A} form a linearly independent set.

Page 60, Problem 8:

You could use the same process as above, but notice that there are 4 vectors in \mathbb{R}^{3} (because the matrix is 3×4).
By Theorem 8 of this section, the vectors are linearly dependent (there must be at least one free variable, if a solution exists).

Page 61, Problem 14:

In order for the vectors to be linearly dependent, the system $\mathrm{Ax}=\mathbf{0}$ (where A is a matrix formed by the column vectors) must have a nontrivial solution.

$$
\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
-2 & 7 & 1 & 0 \\
-4 & 6 & h & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
0 & 1 & 5 & 0 \\
0 & -6 & 8+h & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 2 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 38+h & 0
\end{array}\right]
$$

A nontrivial solution exists when there is a free variable. Therefore, a nontrivial solution exists for $h=-38$.

Page 61, Problem 18:

This a set of 4 vectors in \mathbb{R}^{2}. By Theorem 8, because $p=4>2=n$, the set of vectors is linearly dependent.

Page 61, Problem 20:

By Theorem 9, any set that contains the zero vector is linearly dependent. Thus, this set is linearly dependent.

Page 61, Problem 21a:

True or False: The columns of a matrix A are linearly independent if the equation $\mathrm{Ax}=\mathbf{0}$ has the trivial solution.

FALSE - A homogenous system always has the trvial solution (as explained on page 56). The question of linear independence is whether the trivial solution is the only solution.

Page 61, Problem 21b:

True or False: If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S .

FALSE - Not all vectors need to be linear combinations of each other. At least one of the vectors needs to be a linear combination of the others (see Thereom 7 and the following warning on page 58).

Page 61, Problem 21c:

True or False: The columns of any 4×5 matrix are linearly dependent.
TRUE - In this case, there are 5 vectors in \mathbb{R}^{4}. By Theorem 8 in this section, because $\mathrm{n}=4<5=\mathrm{p}$, the set of vectors formed by the columns of this matrix are linearly dependent.

Page 61, Problem 21d:

If \mathbf{x} and \mathbf{y} are linearly independent, and if $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then \mathbf{z} is in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
TRUE - Because $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent but $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, \mathbf{z} must be a linear combination of \mathbf{x} and \mathbf{y}. Thus, \mathbf{z} must be in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.

Page 61, Problem 33:
TRUE - Because \mathbf{v}_{3} is a linear combination of the vectors \mathbf{v}_{1} and \mathbf{v}_{2}, the set is linearly dependent, by Theorem 7 of this section.

