MATH 221, Fall 2016 - Homework 2 Solutions

Due Tuesday, September 20

Section 1.4

Page 40, Problem 2:

The product is not defined because the order of the matrix is 3 x 1 and the order of the vector is 2 x 1 . The number of columns of the first matrix (3) does not equal the number of entries of the vector (2).

Page 40, Problem 4:

The product is defined because the order of the matrix is 2 x 3 and the vector is 3 x 1 (so the number of columns (3) in the matrix is equal to the number of entries in the vector). The order of the product should be 2 x 1 , the number of rows of the matrix and the number of entries of the vector.
a. Using the definition, as in Example 1 on page 35:
$\left[\begin{array}{ccc}1 & 3 & -4 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=1\left[\begin{array}{l}1 \\ 3\end{array}\right]+2\left[\begin{array}{l}3 \\ 2\end{array}\right]+1\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]+\left[\begin{array}{l}6 \\ 4\end{array}\right]+\left[\begin{array}{c}-4 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
b. Using the row-vector rule (explained on page 38):
$\left[\begin{array}{ccc}1 & 3 & -4 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}1(1)+3(2)+-4(1) \\ 3(1)+2(2)+1(1)\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
Page 40, Problem 6:

This exercise is similar to part a of the problem 4, which is like Example 1. Use the elements of the vector as scalars for the columns of the matrix:
$-3 \cdot\left[\begin{array}{c}2 \\ 3 \\ 8 \\ -2\end{array}\right]+5 \cdot\left[\begin{array}{c}-3 \\ 2 \\ -5 \\ 1\end{array}\right]=\left[\begin{array}{c}-21 \\ 1 \\ -49 \\ 11\end{array}\right]$
Page 40, Problem 8:

This is similar to the previous exercise, but now write the column vectors as a 2 x 4 matrix, the scalars as a 4 x 1 column-vector, and keep the left-side of the equation as a two-column vector:
$\left[\begin{array}{cccc}2 & -1 & -4 & 0 \\ -4 & 5 & 3 & 2\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3} \\ z_{4}\end{array}\right]=\left[\begin{array}{c}5 \\ 12\end{array}\right]$

Vector Equation: $x_{1}\left[\begin{array}{l}5 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}1 \\ 2\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 4\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$ Matrix Equation: $\left[\begin{array}{ccc}5 & 1 & -3 \\ 0 & 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}8 \\ 0\end{array}\right]$
Page 40, Problem 12:
Augmented Matrix: $\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ -3 & -4 & 2 & 2 \\ 5 & 2 & 3 & -3\end{array}\right]$ Row-Reduction: $\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 2 & -1 & 5 \\ 0 & -8 & 8 & -8\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 2 & -1 & 5 \\ 0 & 1 & -1 & 1\end{array}\right] \rightarrow$
$\left[\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & 2 & -1 & 5 \\ 0 & 0 & 1 & 3\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 4 \\ 0 & 2 & 0 & 8 \\ 0 & 0 & 1 & 3\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3\end{array}\right]$ The solution, as a vector: $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-4 \\ 4 \\ 3\end{array}\right]$
Page 40, Problem 13:

To answer this question, determine if \mathbf{u} is a linear combination of the columns of A . That is, determine if
$A \mathbf{x}=\mathbf{u}$ has a solution. The augmented matrix is $\left[\begin{array}{ccc}3 & -5 & 0 \\ -2 & 6 & 4 \\ 1 & 1 & 4\end{array}\right]$ and row-reduction yields:
$\left[\begin{array}{ccc}1 & 1 & 4 \\ 3 & -5 & 0 \\ -2 & 6 & 4\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 1 & 4 \\ 0 & -8 & -12 \\ 0 & 8 & 12\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$. Because there is no pivot in the last column, a
solution exists, so \mathbf{u} is in the plane in \mathbb{R}^{3} spanned by the columns of \mathbf{A}.

Page 40, Problem 14:
This question is answered in the same way as above. That is, determine if $\mathbf{A x}=\mathbf{u}$ has a solution.
The augmented matrix is $\left[\begin{array}{cccc}2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4\end{array}\right]$ and row-reduction yields:
$\left[\begin{array}{cccc}2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -4\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 3\end{array}\right]$. Because there is a pivot in the
last column, no solution exists, so \mathbf{u} is NOT in the subset of \mathbb{R}^{3} spanned by the columns of A.

Page 41, Problem 22:
The matrix formed by these vectors is $\left[\begin{array}{ccc}0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 9 & -6\end{array}\right]$, which is row equivalent to $\left[\begin{array}{ccc}-3 & 9 & -6 \\ 0 & 3 & -2 \\ 0 & 0 & 4\end{array}\right]$.
It is clear that there is a pivot in each row, so the vectors span \mathbb{R}^{3} by Theorem 4 of this section.

Page 42, Problem 34:

We know $\mathbf{v}_{1}=A \mathbf{u}_{1}$ and $\mathbf{v}_{2}=A \mathbf{u}_{2}$ are consistent and $\mathbf{w}=\mathbf{v}_{1}+\mathbf{v}_{2}$. So, $\mathbf{w}=\mathbf{v}_{1}+\mathbf{v}_{2}=A \mathbf{u}_{1}+A \mathbf{u}_{2}$. By

Theorem 5a of this section, $\mathbf{w}=A \mathbf{u}_{1}+A \mathbf{u}_{2}=A\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)$. Therefore, $\mathbf{x}=\mathbf{u}_{1}+\mathbf{u}_{2}$ is a solution to $A \mathbf{x}=\mathbf{w}$.

Assume $\mathbf{A y}=\mathbf{z}$ is true. Then, $5 \mathbf{z}=5 \mathrm{~A} \mathbf{y}=\mathrm{A}(5 \mathbf{y})$ (by Theorem 5 b on page 39). Let $\mathbf{x}=5 \mathbf{y}$. Then, $\mathrm{A} \mathbf{x}=5 \mathbf{z}$ is also consistent.

Section 1.5

Page 47, Problem 2:
Use row operations on the augmented matrix: $\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ -2 & -3 & -4 & 0 \\ 2 & -4 & 9 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & -7 & 5 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & -7 & 2 & 0 \\ 0 & 0 & 3 & 0\end{array}\right]$.
Because there is a pivot in every column of the coefficient matrix, there are no free variables, so the system has only the trivial solution.

Page 47, Problem 13:
As vectors, this line is $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$, which is a line through $\left[\begin{array}{c}-5 \\ 2 \\ 0\end{array}\right]$ parallel to $\left[\begin{array}{c}4 \\ -7 \\ 1\end{array}\right]$.
Page 47, Problem 15:
First, realize that the second equation is the first equation shifted by 2 . Solving the first equation for x_{1} results in $x_{1}=-5 x_{2}+3 x_{3}$. In vector form, this is the same as $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$, which is a plane through the origin spanned by $\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$. The solution to the second equation is: $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right]$, which is a parallel plane through $\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right]$ instead of $\mathbf{0}$.

Page 48, Problem 38:
By Theorem 5b on page $39, A(c \mathbf{w})=c A \mathbf{w}$. Since \mathbf{w} satisfies $\mathrm{Ax}=\mathbf{0}, \mathrm{Aw}=\mathbf{0}$. So, $c A \mathbf{w}=c \mathbf{0}=\mathbf{0}$, so $A(c \mathbf{w})=\mathbf{0}$.

