MATH 221, Fall 2016 - Homework 10 Solutions

Due Tuesday, November 22

Section 3.1

Page 168, Problem 15:

Using the diagonal product method results in:
$\operatorname{det} A=3(3)(-1)+(0)(2)(0)+(4)(2)(5)-(0)(3)(4)-(5)(2)(3)-(-1)(2)(0)=-9+0+40-0-30+0=1$
Page 168, Problem 33:
$E A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}c & d \\ a & b\end{array}\right], \operatorname{det} E A=b c-a d$,
$\operatorname{det} E=-1, \operatorname{det} A=a d-b c$,
$\operatorname{det} E * \operatorname{det} A=-1 *(a d-b c)=b c-a d$
Page 168, Problem 41:

The graph of the parallelogram is:

The formula for the area of a parallelgoram is $A=b h$, where b is the length of the base and h is height. From this picture, it is clear that the height is 2 and the base is 3 , so the area is 6 .

The determinant of $[\mathbf{u} \mathbf{v}]$ is equal to 6 .
If the first entry of \mathbf{v} is changed, the area of the parallelogram is still 6 and the determinant of the matrix is still 6 .

Section 3.2

Page 175, Problem 20:
Transforming the matrix $\left[\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right]$ by $-R_{2}+R_{1} \rightarrow R_{1}$ yields $\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. Because $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=7$ and the only row-operations on the matrix were adding a multiple of a row, $\left|\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right|=7$.

Page 175, Problem 21:

Use row-operations to reduce the matrix:
$\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & 3 & 4 \\ 1 & 2 & 1\end{array}\right]: R_{3} \leftrightarrow R_{1}:\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & 3 & 4 \\ 2 & 3 & 0\end{array}\right]:-R_{1}+R_{2} \rightarrow R_{2}:\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 3 & 0\end{array}\right]:-2 R_{1}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -2\end{array}\right]:$ $R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$. Thus, the determinant is -1 (because of the row-interchange at the beginning).

Because the determinant does not equal 0 , the matrix is invertible.

Page 175, Problem 22:

Use row-operations to reduce the matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5 & 0 & -1 \\
1 & -3 & -2 \\
0 & 5 & 3
\end{array}\right]: R_{1} \leftrightarrow R_{2}:\left[\begin{array}{ccc}
1 & -3 & -2 \\
5 & 0 & -1 \\
0 & 5 & 3
\end{array}\right]:-5 R_{1}+R_{2} \rightarrow R_{2}:\left[\begin{array}{ccc}
1 & -3 & -2 \\
0 & 15 & 9 \\
0 & 5 & 3
\end{array}\right]:} \\
& -\frac{1}{3} R_{2}+R_{3} \rightarrow R_{3}:\left[\begin{array}{ccc}
1 & 3 & -2 \\
0 & 15 & 9 \\
0 & 0 & 0
\end{array}\right] . \text { Because the determinant is equal to } 0 \text {, the matrix is not invertible. }
\end{aligned}
$$

Page 176, Problem 35:
By Theorem $6, \operatorname{det} U^{T} U=\operatorname{det} U^{T} * \operatorname{det} U$. By Theorem $5, \operatorname{det} U^{T}=\operatorname{det} U$, so
$\operatorname{det} U^{T} U=(\operatorname{det} U)^{2}$. Since $U^{T} U=I, 1=\operatorname{det} I=\operatorname{det} U^{T} U=(\operatorname{det} U)^{2}$. Therefore, $\operatorname{det} U= \pm 1$.
Page 176, Problem 37:

Straightforward calculation of $\operatorname{det} A=3(1)-0(6)=3$ and $\operatorname{det} B=2(4)-0(5)=8$ shows that $(\operatorname{det} A)(\operatorname{det} B)=3(8)=24$. The determinant of the matrix product $A B=\left[\begin{array}{cc}6 & 0 \\ 17 & 4\end{array}\right]$ is
$\operatorname{det} A B=6(4)-0(17)=24$. Thus, $24=\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)=24$.

Straightforward calculations using the properties of determinants:

- $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)=(-1)(2)=-2$
- $\operatorname{det} B^{5}=(\operatorname{det} B)^{5}=2^{5}=32$
- $\operatorname{det} 2 A=2^{4} \operatorname{det} A=16(-1)=-16$
- NOTE: When A is an $n \times n$ matrix, $\operatorname{det}(r A)=r^{n} \operatorname{det} A$, by factoring an r out of each of the n rows.
- $\operatorname{det} A^{T} A=\left(\operatorname{det} A^{T}\right)(\operatorname{det} A)=(\operatorname{det} A)(\operatorname{det} A)=-1(-1)=1$
- $\operatorname{det} B^{-1} A B=\left(\operatorname{det} B^{-1}\right)(\operatorname{det} A)(\operatorname{det} B)=\left(\frac{1}{2}\right)(-1)(2)=-1$
- NOTE: $B B^{-1}=I \Longrightarrow \operatorname{det} B B^{-1}=(\operatorname{det} B)\left(\operatorname{det} B^{-1}\right)=\operatorname{det} I=1$, so $\operatorname{det} B^{-1}=\frac{1}{\operatorname{det} B}$

Page 176, Problem 41:

Calculate each determinant: $\operatorname{det} A=(a+e)(d)-(b+f)(c)=a d+d e-b c-c f=a d-b c+e d-f c$, $\operatorname{det} B=a d-b c, \operatorname{det} C=e d-f c$. It is clear then that $\operatorname{det} A=\operatorname{det} B+\operatorname{det} C$

