Name:

MATH221

test \#3, 12/1/16
Sections 4.1-4.6
Solutions
Total 100
Show all work legibly.

1. (25) Let T be a linear transformation from \mathbf{P}_{2} to \mathbf{R}^{2} defined by $T(\mathbf{p})=\left[\begin{array}{l}\mathbf{p}(0) \\ \mathbf{p}(1)\end{array}\right]$.

Find A the standard matrix of the transformation (the standard basis for \mathbf{P}_{2} is $\left\{1, \mathbf{x}, \mathbf{x}^{2}\right\}$).
Solution. If $\left\{\mathbf{p}_{1}(x), \mathbf{p}_{2}(x), \mathbf{p}_{3}(x)\right\}=\left\{1, \mathbf{x}, \mathbf{x}^{2}\right\}$ is the standard basis for \mathbf{P}_{2}, then $A=\left[T\left(\mathbf{p}_{1}\right), T\left(\mathbf{p}_{2}\right), T\left(\mathbf{p}_{3}\right)\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$.
2. (25) Let A be an $n \times n$ matrix. Consider the set \mathcal{X} of all $n \times n$ matrices that satisfy $A X=0$. True or False? \mathcal{X} is a vector space.

Solution.

(a) Let X_{1} and X_{2} be $n \times n$ matrices such that $A X_{1}=A X_{2}=0$. Note that $A\left(X_{1}+X_{2}\right)=$ $A X_{1}+A X_{2}=0$.
(b) If $A X=0$, and c is a scalar, then $A(c X)=c A X=0$.

Mark one and explain.

- True \quad False

3. (30) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 4 & 5\end{array}\right]$.
(a) (15) Find dim Row A.

Solution. A is row equivalent to $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$. The matrix has 3 pivots, hence dim Row $A=3$
(b) (15) Find $\operatorname{dim} \operatorname{Nul} A$.

Solution. Since dim Row $A+\operatorname{dim} \operatorname{Nul} A=3$, and dim Row $A=3$ one has $\operatorname{dim} \operatorname{Nul} A=0$.
4. (20) Consider a two function set $S=\left\{x, e^{x}\right\}$. True or False? S is a linearly independent set.

Solution. Assuming linear dependance we can find two constants c_{1}, and c_{2} so that $f(x)=c_{1} x+c_{2} e^{x}=0$ for each $x \in \mathbf{R}$. Note that $0=f^{\prime}(x)=c_{1}+c_{2} e^{x}=f^{\prime \prime}(x)=c_{2} e^{x}$, hence $c_{2}=0$, and also $c_{1}=0$. This contradiction completes the proof.
Mark one and explain.

- True \quad False

