Name:
MATH221
test \#1, 10/27/16
Sections 1.8-1.9, 2.1-2.3 Solutions
Total 100
Show all work legibly.

1. (20) Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Find A^{-1} if exists.

Solution.

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

$A^{-1}=A$.
2. (20) Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. If B is a 2×3 matrix so that $A B=C=\left[\begin{array}{lll}6 & 1 & 2 \\ 3 & 4 & 5\end{array}\right]$. Find B.

Solution.

$$
B=A^{-1} C=\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 1 & 2
\end{array}\right]
$$

$B=$
3. (20) Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$. Identify all 2×3 matrices X that solve $A X=\left[\begin{array}{lll}4 & 5 & 6 \\ 4 & 5 & 6\end{array}\right]$.

Solution.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 2 & 3 \\
0 & 1 & 4 & 5 & 6
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
0 & 1 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Hence $X=\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ 4 & 5 & 6\end{array}\right], x_{1}, x_{2}, x_{3}$ are real numbers.
4. (40) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation so that $T\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}$, and $T\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}$.
(a) (10) Find A the standard matrix of the transformation.

Solution.

$$
A=\left[T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)\right]=\left[\mathbf{e}_{2}, \mathbf{e}_{1}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

(b) (15) True or False? T is one-to-one.

Solution. Since A is invertible T is one-to-one.
Mark one and explain.

- True \quad False
(c) (15) True or False? T is onto.

Solution. Since A is invertible T is onto.
Mark one and explain.

- True - False

