MATH221

quiz $\# 3,11 / 10 / 15$
Total 100
Solutions

Show all work legibly.
Name: \qquad

1. (20) In the vector spave V of all real functions find a basis for $\operatorname{span}\{\sin t, \sin 2 t, \sin t \cos t\}$.

Solution. Since $\sin 2 t=2 \sin t \cos t$ the set $\{\sin t, \sin 2 t, \sin t \cos t\}$ is linearly dependent, and $\operatorname{span}\{\sin t, \sin 2 t, \sin t \cos t\}=\operatorname{span}\{\sin t, \sin t \cos t\}$. Since $\sin t$ is not proportional to $\sin t \cos t$, the set $\{\sin t, \sin t \cos t\}$ is linearly independent.

A basis is:
2. (20) Define $T: \mathbf{P}_{2} \rightarrow \mathbf{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{c}\mathbf{p}(0) \\ \mathbf{p}^{\prime}(1)\end{array}\right]$.
(a) (10) Describe Null $T=\left\{\mathbf{p}: \mathbf{p}(0)=0\right.$, and $\left.\mathbf{p}^{\prime}(1)=0\right\}$.

Solution. If $\mathbf{p}(x)=a_{0}+a_{1} x+a_{2} x^{2}$, then

$$
0=\mathbf{p}(0)=a_{0}, \text { and } 0=\mathbf{p}^{\prime}(1)=a_{1}+2 a_{2}
$$

Hence Null $T=\left\{\mathbf{p}: \mathbf{p}(x)=-2 t x+t x^{2}\right\}$.
Null $T=$
(b) (10) Describe range of T.

Solution. Let $\mathbf{p}_{1}(x)=1$, and $\mathbf{p}_{2}(x)=x$. Note that

$$
T\left(\mathbf{p}_{1}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \text { and } T\left(\mathbf{p}_{2}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Hence range of T is \mathbf{R}^{2}.
Range of T is
3. (20) Suppose $\mathbf{R}^{4}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$. True or False? The vector set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent.

Solution. Suppose the opposite, i.e. the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly dependent. In his case one of the vectors, say \mathbf{v}_{4}, is a linear combination of the other three vectors. This implies $\mathbf{R}^{4}=$

Span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, there is a basis of \mathbf{R}^{4} that contains less than 4 vectors. This contradiction completes the proof.

Mark one and explain.

- True
- False

4. (20) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a set of vectors in a vector space V so that every $\mathbf{v} \in \mathbf{V}$ has a unique representation as a linear combination of elements of \mathcal{B}. True or False? The vector set \mathcal{B} is linearly independent.

Solution. If $0=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$, then $c_{1}=c_{2}=\ldots=c_{n}=0$.
Mark one and explain.
■ True \quad False
5. (20) Let H be a subspace of V, and $T: V \rightarrow W$ is a linear transformation betweet vector spaces V, and W.
(a) (10) True or False? $T(H)$, the set of images of vectors in H, is a subspace of W.

Solution. If $T\left(c_{1} \mathbf{h}_{1}+c_{2} \mathbf{h}_{2}\right)=c_{1} T\left(\mathbf{h}_{1}\right)+c_{2} T\left(\mathbf{h}_{2}\right)$.
Mark one and explain.

- True \quad False
(b) (10) True or False? $\operatorname{dim} T(H) \leq \operatorname{dim} H$.

Solution. If $\left\{T\left(\mathbf{h}_{1}\right), \ldots, T\left(\mathbf{h}_{k}\right)\right\}$ is a basis for $T(H)$, then the vector set $\left\{\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}\right\}$ is linearly independent, hence $\operatorname{dim} T(H)=k \leq \operatorname{dim} H$.

Mark one and explain.
\square True \quad False
6. (20) Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Find rank $\mathbf{u v}^{T}$.

Solution. Since $\mathbf{u v}^{T}=[4 \mathbf{u} 5 \mathbf{u} 6 \mathbf{u}]$, rank $\mathbf{u v}^{T}=1$.
rank $\mathbf{u v}^{T}=$

