MATH221

quiz #3, 11/10/15

Total 100

Solutions

Show all work legibly.

3. T		
Name:		

1. (20) In the vector spave V of all real functions find a basis for span $\{\sin t, \sin 2t, \sin t \cos t\}$.

Solution. Since $\sin 2t = 2 \sin t \cos t$ the set $\{\sin t, \sin 2t, \sin t \cos t\}$ is linearly dependent, and span $\{\sin t, \sin 2t, \sin t \cos t\} = \text{span } \{\sin t, \sin t \cos t\}$. Since $\sin t$ is not proportional to $\sin t \cos t$, the set $\{\sin t, \sin t \cos t\}$ is linearly independent.

A basis is:

2. (20) Define
$$T: \mathbf{P}_2 \to \mathbf{R}^2$$
 by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}'(1) \end{bmatrix}$.

(a) (10) Describe Null $T = \{ \mathbf{p} : \mathbf{p}(0) = 0, \text{ and } \mathbf{p}'(1) = 0 \}.$

Solution. If **p**(x) = $a_0 + a_1 x + a_2 x^2$, then

$$0 = \mathbf{p}(0) = a_0$$
, and $0 = \mathbf{p}'(1) = a_1 + 2a_2$.

Hence Null $T = \{ \mathbf{p} : \mathbf{p}(x) = -2tx + tx^2 \}.$

Null T =

(b) (10) Describe range of T.

Solution. Let $\mathbf{p}_1(x) = 1$, and $\mathbf{p}_2(x) = x$. Note that

$$T(\mathbf{p}_1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and $T(\mathbf{p}_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Hence range of T is \mathbf{R}^2 .

Range of T is

3. (20) Suppose $\mathbf{R}^4 = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. True or False? The vector set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent.

Solution. Suppose the opposite, i.e. the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly dependent. In his case one of the vectors, say \mathbf{v}_4 , is a linear combination of the other three vectors. This implies $\mathbf{R}^4 =$

Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, there is a basis of \mathbf{R}^4 that contains less than 4 vectors. This contradiction completes the proof.

Mark one and explain.

 \Box True

□ False

4. (20) Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a set of vectors in a vector space V so that every $\mathbf{v} \in \mathbf{V}$ has a unique representation as a linear combination of elements of \mathcal{B} . True or False? The vector set \mathcal{B} is linearly independent.

Solution. If $0 = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$, then $c_1 = c_2 = \ldots = c_n = 0$.

Mark one and explain.

True

□ False

5. (20) Let H be a subspace of V, and $T:V\to W$ is a linear transformation betweet vector spaces V, and W.

(a) (10) True or False? T(H), the set of images of vectors in H, is a subspace of W.

Solution. If $T(c_1\mathbf{h}_1 + c_2\mathbf{h}_2) = c_1T(\mathbf{h}_1) + c_2T(\mathbf{h}_2)$.

Mark one and explain.

□ True

False

(b) (10) True or False? dim $T(H) \leq \dim H$.

Solution. If $\{T(\mathbf{h}_1), \dots, T(\mathbf{h}_k)\}$ is a basis for T(H), then the vector set $\{\mathbf{h}_1, \dots, \mathbf{h}_k\}$ is linearly independent, hence dim $T(H) = k \leq \dim H$.

Mark one and explain.

□ True

False

6. (20) Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$. Find rank $\mathbf{u}\mathbf{v}^T$.

Solution. Since $\mathbf{u}\mathbf{v}^T = [4\mathbf{u} \ 5\mathbf{u} \ 6\mathbf{u}]$, rank $\mathbf{u}\mathbf{v}^T = 1$.

 $\operatorname{rank} \mathbf{u} \mathbf{v}^T =$